Matrizes

544 palavras 3 páginas
INTRODUÇÃO
O desenvolvimento das matrizes ocorreu a partir do século XIX, apesar de ter representações de números semelhantes as matrizes modernas desde a Era Cristã, com matemáticos como Arthur Cayley, Augustin-Louis Cauchy e William Rowan Hamilton. Recentemente, com as planilhas eletrônicas de computador, podem ser feitos cálculos antes realizados à mão, de maneira cansativa e lenta. Essas planilhas, em geral, são formadas por tabelas que armazenam os dados utilizados no problema.
Este trabalho abordará a definição e os tipos de matrizes, sendo as operações trabalhadas minuciosamente em artigos posteriores. A intenção aqui formar um alicerce seguro para o desenvolvimento de operações matriciais futuras, sem que o estudante perca tempo ou enfrente dificuldades.
As matrizes serão cobradas nos vestibulares onde forem pedidas as competências básicas de matemática. Ela ainda será encontrada em diversas outras áreas, a exemplo da física, administração, engenharia, computação gráfica entre outras.
Conceituando matriz
Para compreendermos a conceituação de matriz, precisamos aderir à convenção dos matemáticos em que a ordenação das linhas de uma matriz seja dada de cima para baixo, e a ordenação das colunas, da esquerda para a direita. Veja o exemplo abaixo e perceba a prática desta convenção.

Vejamos mais detalhadamente o resultado desta convenção.

Em termos gerais: uma matriz m x n, com m e n números naturais não nulos, é toda tabela composta por m.n elementos dispostos em m linhas e n colunas.
Representando matrizes
Uma matriz é, em geral, representa por uma letra maiúscula do nosso alfabeto (A, B, C, ...Z), enquanto os seus termos são representados pela mesma letra, desta vez minúscula, acompanhada de dois índices (a11 a12 a13 ... amn), onde o primeiro representa a linha e o segundo a coluna em que o elemento está localizado.
Uma representação genérica de matriz é mostrada em seguida:

Chamemos esta matriz de A, e sua ordem é m x n, ou seja,

Relacionados

  • MATRIZES
    762 palavras | 4 páginas
  • Matrizes
    974 palavras | 4 páginas
  • Matrizes
    818 palavras | 4 páginas
  • Matrizes
    557 palavras | 3 páginas
  • Matrizes
    1021 palavras | 5 páginas
  • matrizes
    1800 palavras | 8 páginas
  • Matrizes
    1815 palavras | 8 páginas
  • Matrizes
    829 palavras | 4 páginas
  • Matrizes
    2533 palavras | 11 páginas
  • Matrizes
    1291 palavras | 6 páginas