função
Computação
Função
1. Definição
O estudo do produto cartesiano serviu de base para aprendermos sobre as relações. Estas agora são o alicerce para o estudo das funções, por isto, para que você assimile melhor este conceito, é importante que você revise os tópicos sobre produto cartesiano e relações.
As funções nada mais são que um tipo particular de relação que possuem uma propriedade específica.
Para iniciarmos o estudo das funções vamos começar analisando a relação
R1= {(-3,9), (0,0), (3,9)}, cujo diagrama de flechas pode ser visto ao lado:
B
A
-3
0
3
0
18
9
Observe que todos os elementos do conjunto A possuem uma flecha em direção a um único elemento do conjunto B.
Por possuir tal propriedade, dizemos que esta relação é uma função f de A em B representada por: f: A → B
2. Domínio da Função
Ao conjunto A damos o nome de domínio da função.
O domínio é o conjunto de partida. Ele composto de todos os elementos do conjunto de partida.
Neste nosso exemplo o domínio da função f é representado por D(f) =
{ -3, 0, 3 }, ou seja, o domínio desta função contém todos os elementos do conjunto A.
Como supracitado, para que tenhamos uma função, todos os elementos do domínio devem estar associados a um e somente um dos elementos de B.
A
-3
0
0
3
9
18
B
3. Domínio da Função
Ao conjunto B damos o nome de contradomínio da função.
O contradomínio é o conjunto de chegada. Ele composto de todos os elementos do conjunto de chegada.
Em nosso exemplo o contradomínio da função f é representado por
CD(f) = { 0, 9, 18 }, isto é, o contradomínio desta função contém todos os elementos do conjunto B.
Segundo o conceito de função não é necessário que todos os elementos de B estejam relacionados aos elementos do domínio. Note que no conjunto B o elemento 18 não recebe nenhuma flecha, isto é, não está relacionado a qualquer elemento de A.
A
-3
0
3
B
0
9
18
4.