Matrizes

1196 palavras 5 páginas
Matrizes
Introdução

Em tabelas assim dispostas, os números são os elementos. As linhas são enumeradas de cima para baixo e as colunas, da esquerda para direita:

Tabelas com m linhas e n colunas ( m e n números naturais diferentes de 0) são denominadas matrizes m x n. Na tabela anterior temos, portanto, uma matriz 3 x 3. Veja mais alguns exemplos: é uma matriz do tipo 2 x 3 é uma matriz do tipo 2 x 2 Notação geral Costuma-se representar as matrizes por letras maiúsculas e seus elementos por letras minúsculas, acompanhadas por dois índices que indicam, respectivamente, a linha e a coluna que o elemento ocupa. Assim, uma matriz A do tipo m x n é representada por:

ou, abreviadamente, A = [aij]m x n, em que i e j representam, respectivamente, a linha e a coluna que o elemento ocupa. Por exemplo, na matriz anterior, a23 é o elemento da 2ª linha e da 3ª coluna. Na matriz , temos:

Ou na matriz B = [ -1 0 2 5 ], temos: a11 = -1, a12 = 0, a13 = 2 e a14 = 5.
Denominações especiais Algumas matrizes, por suas características, recebem denominações especiais.
Matriz linha: matriz do tipo 1 x n, ou seja, com uma única linha. Por exemplo, a matriz A =[4 7 -3 1], do tipo 1 x 4. Matriz coluna: matriz do tipo m x 1, ou seja, com uma única coluna. Por exemplo,, do tipo 3 x 1 Matriz quadrada: matriz do tipo n x n, ou seja, com o mesmo número de linhas e colunas; dizemos que a matriz é de ordem n. Por exemplo, a matriz é do tipo 2 x 2, isto é, quadrada de ordem 2. Numa matriz quadrada definimos a diagonal principal e a diagonal secundária. A principal é formada pelos elementos aij tais que i = j. Na secundária, temos i + j = n + 1. Veja:

Observe a matriz a seguir:

a11 = -1 é elemento da diagonal principal, pis i = j = 1 a31= 5 é elemento da diagonal secundária, pois i + j = n + 1 ( 3 + 1 = 3 + 1)
Matriz nula: matriz em que todos os elementos são nulos; é representada por 0m x n.
Por exemplo, . Matriz diagonal: matriz quadrada em que

Relacionados

  • MATRIZES
    762 palavras | 4 páginas
  • Matrizes
    974 palavras | 4 páginas
  • Matrizes
    818 palavras | 4 páginas
  • Matrizes
    557 palavras | 3 páginas
  • Matrizes
    1021 palavras | 5 páginas
  • matrizes
    1800 palavras | 8 páginas
  • Matrizes
    1815 palavras | 8 páginas
  • Matrizes
    829 palavras | 4 páginas
  • Matrizes
    2533 palavras | 11 páginas
  • Matrizes
    1291 palavras | 6 páginas