Vetores
HISTORIA:
Vetores nasceram nas primeiras duas décadas do século 19 com as representações geométricas de números complexos. Caspar Wessel (1745--1818), Jean Robert Argand (1768--1822), Carl Friedrich Gauss (1777--1855) e pelo menos um ou dois outros, conceberam números complexos como pontos no plano bidimensional, isto é, como vetores bidimensionais. Matemáticos e cientistas trabalharam com estes novos números e os aplicaram de várias maneiras; por exemplo, Gauss fez um uso crucial de números complexos para provar o Teorema Fundamental da Álgebra (1799). Em 1837, William Rowan Hamilton (1805-1865) mostrou que os números complexos poderiam ser considerados abstratamente como pares ordenados (a, b) de números reais. Esta idéia era parte de uma campanha de muitos matemáticos, incluindo Hamilton, para procurar uma maneira de estender os "números" bidimensionais para três dimensões; mas ninguém conseguiu isto preservando as propriedades algébricas básicas dos números reais e complexos. Em 1827, August Ferdinand Möbius publicou um pequeno livro, The Barycentric Calculus, no qual introduziu diretamente segmentos de reta que eram denotados por letras do alfabeto, vetores na essência, mas não no nome. No seu estudo de centros de gravidade e geometria projetiva, Möbius desenvolveu uma aritmética destes segmentos de reta; adicionou-os e mostrou como multiplicá-los por um número real. Seus interesses estavam em outro lugar, contudo, e ninguém se importou em notar a importância destes cálculos. Depois de muita frustração, Hamilton estava finalmente inspirado a desistir da procura por um sistema "numérico" tridimensional e em vez disso, inventou um sistema de quatro dimensões que chamou de quatérnios. Nas suas próprias palavras: 16 de outubro de 1843,
O que parecia ser uma segunda-feira e um dia de Conselho da Academia Real Irlandesa - eu estava caminhando para participar e presidir, …, ao longo do Canal Real, … uma sub-corrente de