Vetores

1153 palavras 5 páginas
Vetores
Determinado por um segmento orientado AB, é o conjunto de todos os segmentos orientados equipolentes a AB.

Se indicarmos com este conjunto, simbolicamente poderemos escrever:

onde XY é um segmento qualquer do conjunto.
O vetor determinado por AB é indicado por ou B - A ou .
Um mesmo vetor é determinado por uma infinidade de segmentos orientados, chamados representantes desse vetor, os quais são todos equipolentes entre si. Assim, um segmento determina um conjunto que é o vetor, e qualquer um destes representantes determina o mesmo vetor. Usando um pouco mais nossa capacidade de abstração, se considerarmos todos os infinitos segmentos orientados de origem comum, estaremos caracterizando, através de representantes, a totalidade dos vetores do espaço. Ora, cada um destes segmentos é um representante de um só vetor. Consequentemente, todos os vetores se acham representados naquele conjunto que imaginamos.
As características de um vetor são as mesmas de qualquer um de seus representantes, isto é: o módulo, a direção e o sentido do vetor são o módulo, a direção e o sentido de qualquer um de seus representantes.
O módulo de se indica por || . Soma de vetores
Se v=(a,b) e w=(c,d), definimos a soma de v e w, por: v + w = (a+c,b+d) Propriedades da Soma de vetores

Diferença de vetores
Se v=(a,b) e w=(c,d), definimos a diferença entre v e w, por: v - w = (a-c,b-d) Produto de um número escalar por um vetor
Se v=(a,b) é um vetor e c é um número real, definimos a multiplicação de c por v como:
c.v = (ca,cb) Propriedades do produto de escalar por vetor
Quaisquer que sejam k e c escalares, v e w vetores:

Módulo de um vetor
O módulo ou comprimento do vetor v=(a,b) é um número real não negativo, definido por:

Vetor unitário
Vetor unitário é o que tem o módulo igual a 1.
Existem dois vetores unitários que formam a base canônica para o espaço R², que são dados por: i = (1,0) j = (0,1)
Para construir um vetor

Relacionados

  • Vetores
    2119 palavras | 9 páginas
  • Vetores
    1454 palavras | 6 páginas
  • vetores
    2198 palavras | 9 páginas
  • Vetores
    1878 palavras | 8 páginas
  • Vetor
    1629 palavras | 7 páginas
  • Vetores
    1392 palavras | 6 páginas
  • vetores
    976 palavras | 4 páginas
  • vetores
    2722 palavras | 11 páginas
  • Vetores
    1956 palavras | 8 páginas
  • vetores
    1390 palavras | 6 páginas