Matrizes
ou, abreviadamente, A = [aij]m x n, em que i e j representam, respectivamente, a linha e a coluna que o elemento ocupa. Por exemplo, na matriz anterior, a23 é o elemento da 2ª linha e da 3ª coluna. Na matriz , temos:
Ou na matriz B = [ -1 0 2 5 ], temos: a11 = -1, a12 = 0, a13 = 2 e a14 = 5.
Matrizes
Denominações especiais Algumas matrizes, por suas características, recebem denominações especiais. * Matriz linha: matriz do tipo 1 x n, ou seja, com uma única linha. Por exemplo, a matriz A =[4 7 -3 1], do tipo 1 x 4. * Matriz coluna: matriz do tipo m x 1, ou seja, com uma única coluna. Por exemplo,, do tipo 3 x 1 * Matriz quadrada: matriz do tipo n x n, ou seja, com o mesmo número de linhas e colunas; dizemos que a matriz é de ordem n. Por exemplo, a matriz é do tipo 2 x 2, isto é, quadrada de ordem 2. Numa matriz quadrada definimos a diagonal principal e a diagonal secundária. A principal é formada pelos elementos aij tais que i = j. Na secundária, temos i + j = n + 1. Veja:
Observe a matriz a seguir:
a11 = -1 é elemento da diagonal principal, pis i = j = 1 a31= 5 é elemento da diagonal secundária, pois i + j = n + 1 ( 3 + 1 = 3 + 1) * Matriz nula: matriz em que todos os elementos são nulos; é representada por 0m x