Intervalos de confiança
Vemos com muita frequência o uso de intervalo de confiança nos resultados de diferentes tipos de estudos. Por exemplo, em estudos que avaliam eficácia terapêutica ou marcadores de risco, a descrição do risco relativo sempre é seguida do intervalo de confiança. Em estudos de acurácia, as medidas de sensibilidade e especificidade devem também ser seguidas do intervalo de confiança. Em estudos descritivos, de prevalência ou incidência, estas proporções devem ter seus intervalos de confiança. Imaginem que um ensaio clínico randomizado afirma que “o risco relativo da droga em relação ao placebo foi 0.78 (95% IC = 0.68 – 0.88).”
O que significa isso?
Se nossos estudos avaliassem toda a população-alvo do estudo, teríamos plena confiança nos resultados. Porém isso não é factível na maioria dos casos, fazendo com que estudemos amostras, ao invés da população. Ao estudar um parte da população (amostra) podemos dar o azar (acaso) de encontrar um resultado que difere da realidade. Por isso, devemos estimar a precisão estatística do resultado. Como fazer?
Poderíamos pensar, se não tenho certeza de que minha amostra está correta, farei um segundo estudo para checar. Neste segundo estudo, imaginem que o resultado do risco relativo foi 0.77, ao invés de 0.78. Puxa vida, então como saber onde está a verdade? Bem, façamos um terceiro estudo, cujo resultado foi 0.79. O jeito é fazer um quarto estudo, e assim sucessivamente ... Ao completar 100 estudos nesse processo de busca do verdadeiro risco relativo, vamos nos deparar com uma variação dos resultados destes estudos. Utilizando esta variabilidade dos resultado, calculamos o intervalo de confiança.
O intervalo de confiança no nível 95% (95% IC) significa que o resultado estará dentro daquele intervalo em 95 dos 100 estudos hipoteticamente realizados, ou seja, o risco relativo estará entre 0.68 e 0.88. O 5 estudos excluídos deste intervalo representam valores extremos que