Fun O Seno
Características da função seno
É uma função f : R → R que associa a cada número real x o seu seno, então f(x) = senx. O sinal da função f(x) = senx é positivo no 1º e 2º quadrantes, e é negativo quando x pertence ao 3º e 4º quadrantes. Observe:
Características da função cosseno:
É uma função f : R → R que associa a cada número real x o seu cosseno, então f(x) = cosx. O sinal da função f(x) = cosx é positivo no 1º e 4º quadrantes, e é negativo quando x pertence ao 2º e 3º quadrantes. Observe:
Características da função tangente:
É uma função f : R → R que associa a cada número real x a sua tangente, então f(x) = tgx. Positivo nos ímpares, negativos nos pares. Observe:
Propriedades das funções
Exercícios
1) Calcular os catetos de um triângulo retângulo cuja hipotenusa mede 6 cm e um dos ângulos mede 60º.
2) Quando o ângulo de elevação do sol é de 65 º, a sombra de um edifício mede 18 m. Calcule a altura do edifício.
(sen 65º = 0,9063, cos 65º = 0,4226 e tg 65º = 2,1445)
3) Quando o ângulo de elevação do sol é de 60º, a sombra de uma árvore mede 15m. Calcule a altura da árvore, considerando √3 = 1,7.
4) Uma escada encostada em um edifício tem seus pés afastados a 50 m do edifício, formando assim, com o plano horizontal, um ângulo de 32º. A altura do edifício é aproximadamente: (sen 32º = 05299, cos 32′ = 0,8480 e tg 32º = 0,6249)
a) 28,41m b) 29,87m c) 31,24 m d) 34,65 m
5) Um avião levanta vôo sob um ângulo de 30º. Depois de percorrer 8 km, o avião se encontra a uma altura de:
a)2 km b)3 km c)4 km d)5 km
6) Um foguete é lançado sob um ângulo de 30 º. A que altura se encontra depois de percorrer 12 km em linha reta?
7) Do alto de um farol, cuja altura é de 20 m, avista-se um navio sob um ângulo de depressão de 30º. A que distância, aproximadamente, o navio se acha do farol? (Use √3 = 1,73)
8 ) Num exercício de tiro, o alvo está a 30 m de altura e, na horizontal, a 82 m de distância do atirador. Qual deve ser o ângulo