algebra
✶ ❞❡ ❏✉❧❤♦ ❞❡ ✷✵✶✸
❈❛♣ít✉❧♦ ✶
❇❛s❡s ❖rt♦♥♦r♠❛✐s
❉❡✜♥✐çã♦ ✶✳✶✳ ❉✐③❡♠♦s q✉❡ w ∈ Rn é ✉♠❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ❞♦s ✈❡t♦r❡s v1 , v2 , . . . , vm q✉❛♥❞♦ ❡①✐st❡♠ α1 , α2 , . . . , αm ∈ R t❛✐s q✉❡ m w = α1 v1 + α2 v2 + . . . + αm vm =
αi vi . i=1 ❉❡✜♥✐çã♦ ✶✳✷✳ ❉✐③❡♠♦s q✉❡
X ⊂ Rn é ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ❣❡r❛❞♦r❡s ❞❡ Rn
q✉❛♥❞♦ t♦❞♦ w ∈ Rn ♣♦❞❡ ❡①♣r✐♠✐r✲s❡ ❝♦♠♦ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r w = α1 v1 + α2 v2 + . . . + αm vm
❞❡ ✈❡t♦r❡s v1 , v2 , . . . , vm ∈ X.
❉❡✜♥✐çã♦ ✶✳✸✳ ❉✐③❡♠♦s q✉❡
X ⊂ Rn é ✉♠ ❝♦♥❥✉♥t♦ ❧✐♥❡❛r♠❡♥t❡ ✐♥❞❡♣❡♥✲
❞❡♥t❡ s❡ ❛ ú♥✐❝❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ♥✉❧❛ ❞❡ ✈❡t♦r❡s ❞❡ X é ❛q✉❡❧❛ ❝✉❥♦s
❝♦❡✜❝✐❡♥t❡s sã♦ t♦❞♦s ✐❣✉❛✐s ❛ ③❡r♦✱ ✐st♦ é✱ s❡
α1 v1 + α2 v2 + . . . + αm vm = 0,
❝♦♠ v1 , v2 , . . . , vm ∈ X ✱ ❡♥tã♦ α1 = α2 = . . . = αm = 0. ❈❛s♦ ❝♦♥trár✐♦✱
❞✐③❡♠♦s q✉❡ X é ✉♠ ❝♦♥❥✉♥t♦ ❧✐♥❡❛r♠❡♥t❡ ❞❡♣❡♥❞❡♥t❡✳
❖❜s❡r✈❛çã♦ ✶✳✶✳ ❙❡ v = α1 v1 +. . .+αm vm = β1 v1 +. . .+βm vm ❡ ♦s ✈❡t♦r❡s v1 , . . . , vm sã♦ ❧✐♥❡❛r♠❡♥t❡ ✐♥❞❡♣❡♥❞❡♥t❡s✱ ❡♥tã♦ α1 = β1 , . . . , αm = βm ✱
♦✉ s❡❥❛✱ v ❡①♣r✐♠❡✲s❡ ❞❡ ❢♦r♠❛ ú♥✐❝❛ ❝♦♠♦ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ❞♦s ✈❡t♦r❡s v1 , v2 , . . . , vm .
❉❡✜♥✐çã♦ ✶✳✹✳ ❯♠❛ ❜❛s❡ ❞❡ Rn é ✉♠ ❝♦♥❥✉♥t♦ B ⊂ Rn ❧✐♥❡❛r♠❡♥t❡ ✐♥❞❡✲
♣❡♥❞❡♥t❡ ❞❡ ❣❡r❛❞♦r❡s ❞❡ Rn ✳
❉❡✜♥✐çã♦ ✶✳✺✳ ❯♠ ❝♦♥❥✉♥t♦ X
⊂ Rn ❞✐③✲s❡ ♦rt♦❣♦♥❛❧ q✉❛♥❞♦ ❞♦✐s ✈❡t♦r❡s q✉❛✐sq✉❡r ❡♠ X sã♦ ♦rt♦❣♦♥❛✐s✳ ❙❡ ❛❧é♠ ❞✐ss♦✱ t♦❞♦s ♦s ✈❡t♦r❡s ❞❡ X sã♦
✉♥✐tár✐♦s✱ ❡♥tã♦ X ❝❤❛♠❛✲s❡ ✉♠ ❝♦♥❥✉♥t♦ ♦rt♦♥♦r♠❛❧✳
❉❡✜♥✐çã♦ ✶✳✻✳ ❯♠❛ ❜❛s❡ ❞❡
Rn ❞✐③✲s❡ ♦rt♦❣♦♥❛❧ ✭♦rt♦♥♦r♠❛❧✮ q✉❛♥❞♦ ❢♦r
✉♠ ❝♦♥❥✉♥t♦ ♦rt♦❣♦♥❛❧ ✭♦rt♦♥♦r♠❛❧✮✳
✶
✶✳✶
❊①❡r❝í❝✐♦s
{(1, 2)}
✶✳ ▼♦str❡ q✉❡
♥ã♦ ❣❡r❛
R2 ✳
{(1, 0), (0, 2), (3, 4)} é ✉♠ ❝♦♥❥✉♥t♦ ❧✐♥❡❛r♠❡♥t❡ ❞❡♣❡♥❞❡♥t❡
❣❡r❛❞♦r❡s ❞❡ R2 ✳
✷✳ ▼♦str❡ q✉❡
❞❡
✸✳ ▼♦str❡ q✉❡
{(3, 4), (5, −6)}
✹✳ ▼♦str❡ q✉❡
{(3, −4), (−4, −3)}
✺✳ ▼♦str❡ q✉❡
{( 53 , − 45 ), (− 45 , − 35 )}
✻✳ ▼♦str❡ q✉❡ ♦s ✈❡t♦r❡s
{e1 , e2 }
♦rt♦♥♦r♠❛❧
❞❡
é ✉♠❛ ❜❛s❡ ❞❡
R2 ✳
é ✉♠❛ ❜❛s❡ ♦rt♦❣♦♥❛❧ ❞❡
é ✉♠❛ ❜❛s❡ ♦rt♦♥♦r♠❛❧ ❞❡
R2 ✳
e1 =