Tabela de laplace
0
1 2 3 4 5
a f(t) + b g(t) e f (t ) f(t - a) H(t - a) , com a ≥ 0 f ′( t ) f ′′( t ) f (n ) ( t ) t 0
at
a F(s) + b G(s) F(s - a) e−as F(s) sF(s) − f (0) s 2 F(s) − sf (0) − f ′(0) s n F(s) − s n −1f (0) − ... − f ( n −1) (0) F(s) s
6 7
f (u ) du
t n f (t)
(−1) n 0
T 0
dnF ds n
(s)
8
f(t) = f( t + T), ∀ t
e −st f ( t )dt
9 10
t 0
f (u ) g ( t − u ) du A k t m−k , onde: (m − k )! k =1 m 1 − e −sT F(s) . G(s)
P(s ) , com P(s) e Q(s) polinômios, Q(s ) grau (P(s)) < grau (Q(s)) . s n raiz de Q(s) de multiplicidade m.
e
sn t
Ak = Lim
1 d k −1 (s − sn )m F(s) k −1 s→s n (k − 1)! ds
{
}
B – TABELA DE TRANSFORMADAS DE LAPLACE IMPORTANTES f(t) F(s) f(t) F(s) 1 6 cos at l 1 s 2 s s + a2 2 7 t senh at 1 a
3 4 5
t n , n natural eat sen at
s2 n! s n +1 1 s−a a s +a
2 2
8 9 10
cosh at
s2 − a 2 s s2 − a 2
H (t − a ) , a ≥ 0 δ(t − a ) , a ≥ 0
e −as s
e −as
NÚMEROS COMPLEXOS z = x + iy ⇔ ez = e x (cos y + i sen y)
e z − e −z ez + e−z senh z = , cosh z = , 2 2
eiz − e −iz eiz + e −iz sen z = , cos z = 2i 2