polinomios
POLINÔMIOS
COXIM/2013
ESCOLA ESTADUAL PEDRO MENDES FONTOURA
POLINÔMIOS
Trabalho da Disciplina de Matemática do curso EJA 2ª Fase da Escola Estadual Pedro Mendes Fontoura, sob a orientação da Professora Maria Emília.
COXIM/2013
Polinômios
A definição de polinômio abrange diversas áreas, pois podemos ter polinômios com apenas um termo na expressão algébrica, como por exemplo: 2x, y, 4z, 2, 5, etc. Mas podemos possuir polinômios com uma infinidade de termos. Por exemplo:
P(x)=an xn+a(n-1) x(n-1)+...+a2 x2+a1 x+a0
Polinômios são compostos pelas várias expressões algébricas, desde aquelas que envolvem apenas números, até as que apresentam diversas letras, potências, coeficientes, entre outros elementos dos polinômios.
Adição e subtração com polinômios
O procedimento utilizado na adição e subtração de polinômios envolve técnicas de redução de termos semelhantes, jogo de sinal, operações envolvendo sinais iguais e sinais diferentes. Observe os exemplos a seguir:
Exemplo de adição com polinômios
Adicionar x2 – 3x – 1 com –3x2 + 8x – 6.
(x2 – 3x – 1) + (–3x2 + 8x – 6) → eliminar o segundo parênteses através do jogo de sinal.
+(–3x2) = –3x2
+(+8x) = +8x
+(–6) = –6
x2 – 3x – 1 –3x2 + 8x – 6 → reduzir os termos semelhantes.
x2 – 3x2 – 3x + 8x – 1 – 6
–2x2 + 5x – 7
Portanto: (x2 – 3x – 1) + (–3x2 + 8x – 6) = –2x2 + 5x – 7
Exemplo de subtração com polinômios
Subtraindo –3x2 + 10x – 6 de 5x2 – 9x – 8.
(5x2 – 9x – 8) – (–3x2 + 10x – 6) → eliminar os parênteses utilizando o jogo de sinal.
– (–3x2) = +3x2
– (+10x) = –10x
– (–6) = +6
5x2 – 9x – 8 + 3x2 –10x +6 → reduzir os termos semelhantes.
5x2 + 3x2 – 9x –10x – 8 + 6
8x2 – 19x – 2
Portanto: (5x2 – 9x – 8) – (–3x2 + 10x – 6) = 8x2 – 19x – 2
Equações Algébricas
Sendo P(x) um polinômio em C ,