Novas tecnologias na matematica
1603 palavras
7 páginas
* INTRODUÇÃO AO CÁLCULO “Aprender Cálculo pode ser sua experiência educacional mais empolgante e estimulante pois é a base para quase toda a Matemática e para muitas das grandes realizações no mundo moderno”. (Louis Leithold) RETAS E COORDENADAS O plano cartesiano A criação da Geometria Analítica é atribuída a René Descartes (1596-1650) que usou a técnica do plano numérico (R2) por volta de 1637. Os eixos x e y Trata-se da disposição de dois eixos imaginários, dispostos um na vertical (eixo y) e outro na horizontal (eixo x), sendo chamado de origem o ponto de interseção entre eles. Pares ordenados Os eixos x e y foram numerados, a partir da origem, até o infinito. Assim, passou a existir uma infinidade de combinações entre esses valores, representados por (x, y) = (a, b), onde x = a e y = b. Por exemplo, se (3, 7) é um par ordenado, então x = 3 e y = 7. Porém, (3, 7) é diferente de (7, 3) Abscissa e Ordenada Em um par ordenado, o valor atribuído a x é chamado de abscissa e o valor atribuído a y é chamado de ordenada. Coordenadas de um ponto Na Geometria Analítica, cada par ordenado é associado a um ponto imaginário no plano cartesiano. É representado por uma letra maiúscula seguida do par ordenado. Exemplo: P(5, -3) é um ponto associado ao par ordenado (x, y) = (5, -3). Um ponto P(x, y) é representado no plano cartesiano conforme o exemplo: Quadrantes: P(4, 2) M(-2, 2) O plano cartesiano é dividido em quatro quadrantes: 0, 0 P está no quadrante I M está no quadrante II L(-5, -1) L está no quadrante III H está no quadrante IV H(2, -3) Distância entre dois pontos Já que supomos a existência de um ponto imaginário no plano cartesiano, é natural que existam outros, pois a possibilidade de pares ordenados é infinita. Entre dois pontos, a primeira pergunta a se fazer é “qual a distância entre eles?”. A Geometria Analítica responde a esta questão usando uma fórmula simples baseada no Teorema de Pitágoras aplicado em * 2. triângulos retângulos (a2 = b2 + c2), em que a