Matrizes

655 palavras 3 páginas
Multiplicacao de matrizes:A multiplicação de matrizes é realizada de acordo com a seguinte condição: o número de colunas da 1ª matriz deve ser igual ao número de linhas da 2ª matriz. Observe alguns modelos de matrizes que podem ser multiplicadas, considerando o formato m x n.

A4x3 * B3x1

A4x2 * B2x3

A1x2 * B2x2

A3x4 * B4x3

Nesse modelo de multiplicação, os métodos são mais complexos. Dessa forma, precisamos ter muita atenção na resolução de uma multiplicação de matrizes. Vamos através de exemplos, demonstrar como efetuar tais cálculos. A operação deverá ser feita multiplicando os membros da linha da 1º matriz pelos membros da coluna da 2º matriz, onde os elementos devem ser somados, constituindo um único item posicional da matriz. Observe um modelo padrão de multiplicação:

Exemplo 1

Realizamos uma multiplicação entre uma matriz A de ordem 2 x 3 por uma matriz B de ordem 3 x 2. Observe que a condição “o número de colunas da 1ª matriz deve ser igual ao número de linhas da 2ª matriz”, foi válida, pois 3 = 3. O interessante é que a matriz, produto da multiplicação, é de ordem 2 x 2, isto é, 2 linhas e 2 colunas, possuindo o mesmo número de linhas da 1ª e o mesmo número de colunas da 2ª.

Portanto, todas essas condições são observadas na multiplicação entre matrizes. Caso alguma dessas condições não seja válida, a operação da multiplicação estará efetuada de forma incorreta. Sempre que realizar multiplicação entre matrizes, faça de forma atenciosa, desenvolvendo completamente o processo, procurando não utilizar meios diretos para obter o resultado.

Exemplo 2 Adição e subtração de matrizes:

A operação com qualquer matriz sempre resultará em outra matriz, independentemente da operação utilizada.

Antes de falarmos da adição e da subtração de matrizes, iremos relembrar do que uma matriz é formada: toda matriz tem seus elementos que são dispostos em linhas e colunas.

A quantidade de linhas e colunas deve ser

Relacionados

  • MATRIZES
    762 palavras | 4 páginas
  • Matrizes
    974 palavras | 4 páginas
  • Matrizes
    818 palavras | 4 páginas
  • Matrizes
    557 palavras | 3 páginas
  • Matrizes
    1021 palavras | 5 páginas
  • matrizes
    1800 palavras | 8 páginas
  • Matrizes
    1815 palavras | 8 páginas
  • Matrizes
    829 palavras | 4 páginas
  • Matrizes
    2533 palavras | 11 páginas
  • Matrizes
    1291 palavras | 6 páginas