matrizes
01. Obter a matriz A = (aij)2x2 definida por aij = 3 i - j.
02. Se A é uma matriz quadrada de ordem 2 e At sua transposta, determine A, tal que A = 2 . At.
03. (UNIV. CATÓLICA DE GOIÁS) Uma matriz quadrada A é dita simétrica se A = AT e é dita anti-simétrica se AT = -A, onde AT é a matriz transposta de A. Sendo A uma matriz quadrada, classifique em verdadeira ou falsa as duas afirmações:
(01) A + AT é uma matriz simétrica
(02) A - AT é uma matriz anti-simétrica
04. Se uma matriz quadrada A é tal que At = -A, ela é chamada matriz anti-simétrica. Sabe-se que M é anti-simétrica e:
Os termos a12, a13 e a23 de M, valem respectivamente:
a) -4, -2 e 4
b) 4, 2 e -4
c) 4, -2 e -4
d) 2, -4 e 2
e) 2, 2 e 4
a) x = y = 0
b) x = y = m = n = 0
c) x = y e m = n
d) y = -2x e n = -2m
e) x = -2y e m = -2n
06. Na confecção de três modelos de camisas (A, B e C) são usados botões grandes (G) e pequenos (p). O número de botões por modelos é dado pela tabela:
Camisa A Camisa B Camisa C
Botões p 3 1 3
Botões G 6 5 5
O número de camisas fabricadas, de cada modelo, nos meses de maio e junho, é dado pela tabela: Maio Junho
Camisa A 100 50
Camisa B 50 100
Camisa C 50 50
Nestas condições, obter a tabela que dá o total de botões usados em maio e junho.
Resolução:
01.
02.
03. (01) verdadeira
(02) verdadeira
04. B
05. E
06. Maio Junho
Botões p 500 400
Botões G 1100 1050