Matrizes
a1x1 +a2x2 +a3x3 + a4x4.......anxn = b
onde x1 , x2 , x3 ,....., xn são variáveis ; e a1 , a2 .....an são os coeficientes da equação , e o b é o termo idependente.
RESOLUÇÃO DA EQUAÇÃO LINEAR
Para toda variável deve existir uma raiz que solucione a equação, sendo assim :
Para todo x existe uma raiz . Como assim ? Se x é uma única incógnita porque existe uma raíz para cada valor de x !!!!? É devido a identificação do x : x1, x2 x3 Que não significam necessariamente uma mesma incógnita e sim x1 pode ser y e x2 podendo ser z e assim é que se explica o fato de usar–se uma mesma letra para diferentes valores. Blza galera!!!!
SISTEMAS DE EQUAÇÕES LINEARES Um conjunto de equações lineares é chamada de: Sistemas Lineares
a11 x1 + a12 x2 ....+a1n xn = b1 a21 x1 + a22 x2 ....+a2n xn = b2 a31 x1 + a32 x2 ....+a3n xn = b3 : : am1 x1 + am2 x2 ....+amn xn = bm
onde : amn significam: a = coeficiente das variáveis m= linhas n= colunas
CLASSIFICAÇÕES Existem algumas classificações quanto a possibilidade de solução; SISTEMA COMPATÍVEL É quando admite solução ou seja, quando existem raízes . DETERMINADO É um sistema compatível e determinado quando admite uma única solução Exemplo
3x + 8y = 25 9x + 4y = 35
É compatível e determinado pois existem raízes Para x =3 Para y = 2
INDETERMINADO É um sistema compatível e indeterminado quando admitem-se infinitas raízes
4x + 2y =100 8x + 4y =200
Y X
0 25
2 24
4 23
6 22
8 21
... ....
SISTEMA INCOMPATÍVEL Um sistema é incompatível quando não admite solução
Exemplo
8x + 9y = 12 8x + 9y = 29
É incompatível, pois o sistema não pode apresentar dois termos independentes para uma mesma expressão sendo assim como os valores de x e y seriam iguais em ambas a expressões, como pode haver respostas diferentes. Se afirmo que:
1 homem + 1 mulher =1 ser humano
1 homem + 1mulher = 1 coelho
Que viajem !!!!
SISTEMAS