Geometria Analitica
A geometria analítica é muito utilizada na física e na engenharia, e é o fundamento das áreas mais modernas da geometria, incluindo geometria algébrica, diferencial, discreta e computacional.
Em geral, o sistema de coordenadas cartesianas é usado para manipular equações para planos, retas, curvas e círculos, geralmente em duas dimensões, mas por vezes também em três ou mais dimensões. A geometria analítica ensinada nos livros escolares pode ser explicada de uma forma mais simples: ela diz respeito a definição e representação de formas geométricas de modo numérico e a extração de informação numérica dessa representação. O resultado numérico também pode, no entanto, ser um vector ou uma forma. O fato de que a álgebra dos números reais pode ser empregada para produzir resultados sobre o contínuo linear da geometria baseia-se no axioma de Cantor-Dedekind.Para começar o estudo da geometria analítica, é necessário conhecer o Plano Cartesiano: O Eixo Y (linha vertical) é chamado de eixo das ordenadas, enquanto que o Eixo X (linha horizontal), é chamado de eixo das abscissas. O ponto P (ponto vermelho da figura) possui duas coordenadas: X e Y , que indicam em que lugar dos eixos das ordenadas e abscissas ele se encontra. Representa-se isso por (Xp, Yp).Os números romanos nos cantos mostram os quadrantes do plano cartesiano. Os pontos do eixo X que estão nos