Formulação de problemas
1. GENERALIDADES
Sem dúvida nenhuma a Programação Linear é uma das técnicas da Pesquisa Operacional das mais utilizadas em se tratando de problemas de otimização. Os problemas de Programação Linear (PL) buscam a distribuição eficiente de recursos limitados para atender um determinado objetivo, em geral, maximizar lucros ou minimizar custos. Em se tratando de PL, esse objetivo é expresso através de uma função linear, denominada de "Função Objetivo". É necessário também que se defina quais as atividades que consomem recursos e em que proporções os mesmos são consumidos. Essas informações são apresentadas em forma de equações as inequações lineares, uma para cada recurso. Ao conjunto dessas equações e/ou inequações, denomina-se "Restrições do Modelo". Normalmente se tem inúmeras maneiras de distribuir os recursos escassos entre as diversas atividades em estudo, bastando para com isso que essas distribuições estejam coerentes com as restrições do modelo. No entanto, o que se busca, num problema PL é a função objetivo, isto é, a maximização do lucro ou a minimização dos custos. A essa solução dá-se o nome de solução ótima. Assim, a Programação linear se incube de achar a solução ótima de um problema, uma vez definida o modelo linear, ou seja, a função objetivo e as restrições lineares.
2. PROBLEMAS DE PROGRAMAÇÃO LINEAR
Como foi dito anteriormente, está-se diante de um problema de PL quando os problemas práticos que se pretende resolver pode ser escrito de forma de maximização (ou minimização) de uma função objetivo linear, sujeita a um conjunto de restrições que podem ser expressos sob a forma de inequações ou equações lineares.
Capítulo 5 - Introdução a Pesquisa Operacional
5. 2
Exemplos de problemas que podem ser resolvidos por programação linear:
a) Um fabricante está iniciando a última semana de produção de quatro diferentes modelos de consoles em madeira para aparelhos de televisão, designados