Calculo
A derivada de uma função y = f(x) num ponto x = x0 , é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y=f(x), no ponto x = x0, ou seja, a derivada é o coeficiente angular da reta tangente ao gráfico da função no ponto x0. A derivada de uma função y = f(x), pode ser representada também pelos símbolos: y' , dy/dx ou f ' (x). A derivada de uma função f(x) no ponto x0 é dada por:
Algumas derivadas básicas
Nas fórmulas abaixo, u e v são funções da variável x. a, b, c e n são constantes.
Derivada de uma constante Derivada da potência
Portanto:
Soma / Subtração
Produto por uma constante
Derivada do produto
Derivada da divisão
Potência de uma função
Derivada de uma função composta
Derivadas
Regra da cadeia
A fórmula: é conhecida como regra da cadeia. Ela pode ser escrita como:
Outra fórmula similar é a seguinte:
Derivada da função inversa
A inversa da função y(x) é a função x(y):
Integrais
Integrais indefinidas
Da mesma forma que a adição e a subtração, a multiplicação e a divisão, a operação inversa da derivação é a antiderivação ou integração indefinida.
Dada uma função g(x), qualquer função f'(x) tal que f'(x) = g(x) é chamada integral indefinida ou antiderivada de f(x).
Exemplos:
1. Se f(x) = , então é a derivada de f(x). Uma das antiderivadas de f'(x) = g(x) = x4 é . 2. Se f(x) = x3, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2é f(x) = x3. 3. Se f(x) = x3 + 4, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3 + 4. Nos exemplos 2 e 3 podemos observar que tanto x3 quando x3+4 são integrais indefinidas para 3x2. A diferença entre quaisquer destas funções (chamadas funções primitivas) é sempre uma constante, ou seja, a integral indefinida de 3x2 é x3+C, onde C é uma constante real. Propriedades das integrais indefinidas São