Atps de calculo ii
A intenção desta ATPS é, falarmos da derivada e da constante de Euller. Sendo que no calculo, a derivada representa a taxa de variação instantânea de uma função. Um exemplo típico é a função velocidade que representa a taxa de variação (derivada da função espaço). Do mesmo modo é a função aceleração que é a derivada da função velocidade, no desenvolver dos passos esta definição estará mais clara. Outro ponto a ser visto é a constante de Euller. Constituída por Leonhard Euller um grande matemático, que desenvolveu cálculos de grande importância desde a sua época ate dias atuais são utilizados, sendo uma constante matemática que engloba cálculos de nível superior, empregado em cálculos diferenciais e integradas.
ETAPA 1
Passo 1
Pesquisar o conceito de velocidade instantânea a partir do limite, com ∆t→0. Comparar a formula aplicada na física com a formula aplicada em calculo e explicar o significado da função V ( velocidade instantânea), a partir da função S ( espaço), utilizando o conceito de derivada, mostrando que a função velocidade e a derivada da função espaço.
Se o movimento não for uniforme, a velocidade média nos dirá sobre o estado do movimento no instante t (ou em qualquer outro instante entre t e t + ∆t). De fato podemos imaginar um sem-número de movimentos diferentes entre os instantes t e t+∆t, todos com a mesma velocidade: ou móvel pode mover-se muito rapidamente em vários trechos ou mais devagar em outros e ate parar uma ou varias vezes antes de completar os percursos: e isto como dizemos de muitas maneiras distintas. Como então caracterizar o “estado do movimento num dado instante t ”nossa experiência com a realidade física nos faz sentir que e preciso deixar fluir o tempo para podermos avaliar a rapidez ou vagarosidade do movimento o que podemos fazer e imaginar o intervalo de tempo ∆t cada vez menores, para que as velocidades medias correspondentes possam dar informações cada vez mais precisas, do que se passam no