O INFINITO AGORA
O aristotelismo nega a existência do infinito atual, que ele seja físico ou abstrato, tendo sido esta a posição dominante durante milénios. Pontualmente surgiram algumas vozes dissonantes, que admitiam pensar o infinito para lá do potencial como atual: Deus poderia ter uma natureza infinita atual, e não apenas um processo com potencial. São exemplos disso Gregório de Nissa, Nicolau de Cusa e, muito mais tarde, Georg Cantor. Em bom rigor, os pioneiros do conceito de infinito atual ainda o associavam ao apeiron - algo logicamente incoerente. Foi Cantor o primeiro a mostrar que o conceito poderia ser trabalhado de forma lógica e racional .
Na matemática, notou-se que existe uma grande diferença qualitativa entre uma sucessão potencial infinita de elementos, discretos, e a sucessão de pontos de um segmento de reta, aquilo que é chamado de linha contínua. No primeiro caso podemos acrescentar sempre mais um elemento, dando mais um passo para o elemento seguinte. Uma sucessão é infinitamente extensível. No caso do contínuo não faz sentido falar do elemento seguinte: entre um determinado ponto e outro posterior, tão próximo quanto se queira, é sempre possível encontrar um ponto intermédio, e assim consecutivamente, até ao infinito. Um segmento contínuo é infinitamente divisível.
Este segundo tipo de infinito levanta grandes questões sobre o infinito potencial, pois parte-se de um todo dado (o segmento de reta) que pode conter um si uma infinidade de elementos. O infinito em ato parece ser um propriedade necessária do contínuo.4
Estas propriedade do segmento de reta foram explicadas através do conceito de infinitésimo: "números" indefinidamente pequenos, menores do que qualquer número real. Este conceito tem raízes na grécia antiga, no atomismo de Leucipo de Mileto