A resolução de problemas e o ensino-aprendizagem de Matemática
De acordo com os PCNs de Matemática, os educadores matemáticos apontam a resolução de problemas como ponto de partida da atividade matemática. Essa ideia traz subentendido o pensamento de que o conhecimento matemático ganha significado quando os alunos têm situações desafiadoras para resolver e procuram desenvolver estratégias de resolução. Os problemas, geralmente, não têm desempenhado seu verdadeiro papel no ensino, pois, na maioria das vezes, são utilizados apenas como forma de aplicação de conhecimentos adquiridos anteriormente pelos alunos. A prática mais comum consiste em ensinar um conceito, procedimento ou técnica e depois apresentar um problema para avaliar se os alunos são capazes de empregar o que lhes foi ensinado. Assim, para a maior parte dos alunos, resolver um problema significa fazer cálculos com os números do enunciado ou aplicar algo que aprenderam nas aulas. Assim sendo, o saber matemático não está sendo apresentado ao aluno como um conjunto de conceitos inter-relacionados, que lhes permite resolver um conjunto de problemas, mas como um interminável discurso abstrato e incompreensível. Trabalha-se com uma concepção de ensino-aprendizagem de que o aluno aprende por reprodução e/ou imitação. A resolução de problemas, do ponto de vista indicado pelos educadores matemáticos, possibilita aos alunos construir conhecimentos e desenvolver a capacidade para lidar com as informações que estão ao seu alcance. Desse modo, os alunos terão oportunidade de ampliar seus conhecimentos acerca de conceitos e procedimentos matemáticos bem como de ampliar a visão que têm dos problemas, da Matemática, do mundo, etc. visando desenvolver sua autoconfiança. A história da Matemática mostra que essa ciência foi construída como resposta a perguntas provenientes de diferentes origens e contextos, motivadas por problemas de ordem prática (divisão de terras, cálculo de créditos, etc.), por