texte escrito
Em termos gerais, um cálculo é frequentemente apresentado como um sistema formal que consiste em um conjunto de expressões sintácticas (fórmulas bem formadas, o), um subconjunto distinto dessas expressões, e um conjunto de regras formais que define uma relação binária específica, que se pretende interpretar como a noção de equivalência lógica, no espaço das expressões.
Quando o sistema formal tem o propósito de ser um sistema lógico, as expressões devem ser interpretadas como asserções matemáticas, e as regras, conhecidas como regras de inferência, normalmente são preservadoras da verdade. Nessa configuração, as regras (que podem incluir axiomas) podem então ser usadas para derivar "inferir" fórmulas representando asserções verdadeiras.
O conjunto de axiomas pode ser vazio, um conjunto finito não vazio, um conjunto finito enumerável, ou pode ser dado por axiomas esquemáticos. Uma gramática formal define recursivamente as expressões e fórmulas bem formadas) da linguagem. Além disso, pode se apresentar uma semântica para definir verdade e valorações (ou interpretações).
A linguagem de um cálculo proposicional consiste em: • um conjunto de símbolos primitivos, definidos como fórmulas atómicas, proposições atômicas, ou variáveis, e • um conjunto de operadores, interpretados como operadores lógicos ou conectivos lógicos.
Uma fórmula bem formada é qualquer fórmula atómica ou qualquer fórmula que pode ser construída a partir de fórmulas atómicas, usando conectivos de acordo com as regras da gramática.
O que segue define um cálculo proposicional padrão. Existem muitas formulações diferentes as quais são todas mais ou