Probabilidade

265 palavras 2 páginas
1) Uma bola será retirada de uma sacola contendo 5 bolas verdes e 7 bolas amarelas. Qual a probabilidade desta bola ser verde?
Neste exercício o espaço amostral possui 12 elementos, que é o número total de bolas, portanto a probabilidade de ser retirada uma bola verde está na razão de 5 para 12.
Sendo S o espaço amostral e E o evento da retirada de uma bola verde, matematicamente podemos representar a resolução assim:

A probabilidade desta bola ser verde é 5/12
4) Um credor está à sua procura. A probabilidade dele encontrá-lo em casa é 0,4. Se ele fizer 5 tentativas, qual a probabilidade do credor lhe encontrar uma vez em casa?
Ou o credor vai a sua casa e o encontra, ou ele vai e não o encontra, como em cada tentativa estamos tratando de um sucesso ou de um fracasso e não há outra possibilidade, além do fato de a probabilidade ser a mesma em todas as tentativas, vamos resolver o problema utilizando o termo geral do Binômio de Newton:

n é o número de tentativas de encontrá-lo, portanto n = 5. k é o número de tentativas nas quais ele o encontra, portanto k = 1. p é a probabilidade de você ser encontrado, logo p = 0,4. q é a probabilidade de você não ser encontrado, logo q = 1 - 0,4, ou seja, q = 0,6.
Substituindo tais valores na fórmula temos:

O número binomial é assim resolvido:

Então temos:

Assim:
A probabilidade de o credor o encontrar uma vez em casa é igual

Relacionados

  • Probabilidade
    2567 palavras | 11 páginas
  • Probabilidade
    1078 palavras | 5 páginas
  • Probabilidade
    2094 palavras | 9 páginas
  • Probabilidade
    2094 palavras | 9 páginas
  • Probabilidades
    2418 palavras | 10 páginas
  • Probabilidade
    2815 palavras | 12 páginas
  • As probabilidades
    3497 palavras | 14 páginas
  • Probabilidade
    1281 palavras | 6 páginas
  • Probabilidade
    506 palavras | 3 páginas
  • Probabilidade
    1784 palavras | 8 páginas