Polinômios
O procedimento utilizado na adição e subtração de polinômios envolve técnicas de redução de termos semelhantes, jogo de sinal, operações envolvendo sinais iguais e sinais diferentes. Observe os exemplos a seguir:
Adição
Exemplo 1 : Adicionar x2 – 3x – 1 com –3x2 + 8x – 6.
(x2 – 3x – 1) + (–3x2 + 8x – 6) → eliminar o segundo parênteses através do jogo de sinal.
+(–3x2) = –3x2
+(+8x) = +8x
+(–6) = –6 x2 – 3x – 1 –3x2 + 8x – 6 → reduzir os termos semelhantes. x2 – 3x2 – 3x + 8x – 1 – 6
–2x2 + 5x – 7
Portanto: (x2 – 3x – 1) + (–3x2 + 8x – 6) = –2x2 + 5x – 7
Exemplo 2 : Adicionando 4x2 – 10x – 5 e 6x + 12, teremos:
(4x2 – 10x – 5) + (6x + 12) → eliminar os parênteses utilizando o jogo de sinal.
4x2 – 10x – 5 + 6x + 12 → reduzir os termos semelhantes.
4x2 – 10x + 6x – 5 + 12
4x2 – 4x + 7 Portanto: (4x2 – 10x – 5) + (6x + 12) = 4x2 – 4x + 7 .
Subtração
Exemplo 1 :
Subtraindo –3x2 + 10x – 6 de 5x2 – 9x – 8.
(5x2 – 9x – 8) – (–3x2 + 10x – 6) → eliminar os parênteses utilizando o jogo de sinal.
– (–3x2) = +3x2
– (+10x) = –10x
– (–6) = +6
5x2 – 9x – 8 + 3x2 –10x +6 → reduzir os termos semelhantes.
5x2 + 3x2 – 9x –10x – 8 + 6
8x2 – 19x – 2
Portanto: (5x2 – 9x – 8) – (–3x2 + 10x – 6) = 8x2 – 19x – 2
Exemplo 2 :
Se subtrairmos 2x³ – 5x² – x + 21 e 2x³ + x² – 2x + 5, teremos:
(2x³ – 5x² – x + 21) – (2x³ + x² – 2x + 5) → eliminando os parênteses através do jogo de sinais.
2x³ – 5x² – x + 21 – 2x³ – x² + 2x – 5 → redução de termos semelhantes.
2x³ – 2x³ – 5x² – x² – x + 2x + 21 – 5