numeros complexos
O conjunto dos números complexos, denotado por \mathbb{C}, contém o conjunto dos números reais. Munido de operações de adição e multiplicação obtidas por extensão das operações de mesma denominação nos números reais, adquire uma estrutura algébrica denominada corpo algebricamente fechado, sendo que esse fechamento consiste na propriedade que tem o conjunto de possuir todas as soluções de qualquer equação polinomial com coeficientes naquele mesmo conjunto (no caso, o conjunto dos complexos). O conjunto dos números complexos também pode ser entendido por seu isomorfismo com um espaço vetorial sobre \mathbb{R}, o conjunto dos reais.
Além disso, a cada número complexo podemos atribuir um número real positivo chamado módulo, dado por:
|z| = \sqrt{x^2 + y^2}.
O módulo de z, visto como uma norma no espaço vetorial, conduz a um espaço normado topologicamente completo.
Os números complexos são representados geometricamente no plano complexo. Nele, representa-se a parte real, x, no eixo horizontal e a parte imaginária, y, no eixo vertical.
Os números complexos são utilizados em várias áreas do conhecimento, tais como engenharia, eletromagnetismo, física quântica, teoria do caos, além da própria matemática, em que são estudadas análise complexa, álgebra linear complexa, álgebra de Lie complexa, com aplicações em resolução de equações algébricas e equações diferenciais.
Em algumas situações, é comum a troca da letra i pela letra j, devido ao frequente uso da primeira como indicação de corrente elétrica.
Índice