Módulo ou valor absoluto - calculando o módulo
Chamamos a distância de um ponto da reta à origem (distância do ponto até o zero) de módulo ou valor absoluto.
Assim, a distância do ponto 4 à origem é 4. Dizemos que o módulo de 4 é igual a 4. E representamos
|4| = 4
Da mesma forma, a distância do ponto -2 à origem é 2, ou seja, o módulo de -2 é 2, pois não há muito sentido em considerarmos distâncias negativas. Assim:
|-2| = 2
Outros exemplos:
|3| = 3
|-7| = 7
|0| = 0
|-1| = 1
Vamos generalizar:
Qual é o módulo de um número qualquer x?
|x| = ?
A resposta é: depende!
Pelos exemplos, podemos observar que, se x for um número positivo, seu módulo é igual a ele mesmo. Porém, se x for um número negativo, a distância não pode ser negativa, logo devemos mudar o sinal desse número, ou considerar o seu oposto (o mesmo número de sinal trocado).
Portanto, |x| = x, se x for um número positivo e |x| = -x, se x for um número negativo, pois devemos trocar o sinal do número negativo.
Ou:
Propriedades do Módulo
1) |a| = |-a|, para todo a real
Não é difícil constatar isso. Observe:
|2| = 2
|10| = 10
|-5| = 5
|-2| = 2
|-10| =10
|5| = 5
2) |x2|=|x|2 = x2, para todo x real
Verifiquemos isso para todas as possibilidades de valores de x: positivo, nulo ou negativo.
a) para x = 5
52 = 25
|5|2 = 52 = 25
|52|=|25|= 25
b) para x = 0
02 = 0
|0|2 = 02 = 0
|02|=|0|= 0
c) para x = -3
(-3) 2 = 9
|-3|2 = 32 = 9
|(-3) 2|=|9|= 9
Associada a essa propriedade está o fato de que
CUIDADO! É errado pensar que Isso só é verdadeiro para x ≥ 0.
Veja:
Para x = 7
Para x = -2
3) |a . b|=|a|.|b|, para quaisquer a e b reais
Veja:
a) a e b positivos
a = 3 e b = 5
|3 . 5|= |15|= 15
|3|.|5|= 3 . 5 = 15
b) a e b de sinais opostos
a = -2 e b = 4
|-2 . 4|= |-8|= 8
|-2|.|4|= 2 . 4 = 8
c) a e b negativos
a = -7 e b = -10
|-7 . (-10)|= |70|= 70