Matriz
Adição
Dadas as matrizes , chamamos de soma dessas matrizes a matriz , tal que Cij = aij + bij , para todo : A + B = C |
Exemplos:
* *
Observação: A + B existe se, e somente se, A e B forem do mesmo tipo.
Propriedades
Sendo A, B e C matrizes do mesmo tipo ( m x n), temos as seguintes propriedades para a adição:
a) comutativa: A + B = B + A
b) associativa: ( A + B) + C = A + ( B + C)
c) elemento neutro: A + 0 = 0 + A = A, sendo 0 a matriz nula m x n
d) elemento oposto: A + ( - A) = (-A) + A = 0
Subtração
Dadas as matrizes , chamamos de diferença entre essas matrizes a soma de A com a matriz oposta de B: A - B = A + ( - B ) |
Observe:
Multiplicação de um número real por uma matriz
Dados um número real x e uma matriz A do tipo m x n, o produto de x por A é uma matriz B do tipo m x n obtida pela multiplicação de cada elemento de A por x, ou seja, bij = xaij: B = x.A |
Observe o seguinte exemplo:
Propriedades
Sendo A e B matrizes do mesmo tipo ( m x n) e x e y números reais quaisquer, valem as seguintes propriedades:
a) associativa: x . (yA) = (xy) . A
b) distributiva de um número real em relação à adição de matrizes: x . (A + B) = xA + xB
c) distributiva de uma matriz em relação à adição de dois números reais: (x + y) . A = xA + yA
d) elemento neutro : xA = A, para x=1, ou seja, A=A
Matrizes
Multiplicação de matrizes
O produto de uma matriz por outra não é determinado por meio do produto dos sus respectivos elementos.
Assim, o produto das matrizes A = ( aij) m x p e B = ( bij) p x n é a matriz C = (cij) m x n em que cada elemento cij é obtido por meio da soma dos produtos dos elementos correspondentes da i-ésima linha de A pelos elementos da j-ésima coluna B.
Vamos multiplicar a matriz para entender como se obtém cada Cij: * 1ª linha e 1ª coluna
* 1ª linha e 2ª coluna
* 2ª linha e 1ª coluna
* 2ª linha e 2ª coluna
Assim, .
Observe que:
Portanto, .A, ou