Motor brushless
Brushless DC motors were developed from conventional brushed DC motors with the availability of solid state power semiconductors. So, why do we discuss brushless DC motors in a chapter on AC motors? Brushless DC motors are similar to AC synchronous motors. The major difference is that synchronous motors develop a sinusoidal back EMF, as compared to a rectangular, or trapezoidal, back EMF for brushless DC motors. Both have stator created rotating magnetic fields producing torque in a magnetic rotor.
Synchronous motors are usually large multi-kilowatt size, often with electromagnet rotors. True synchronous motors are considered to be single speed, a submultiple of the powerline frequency. Brushless DC motors tend to be small– a few watts to tens of watts, with permanent magnet rotors. The speed of a brushless DC motor is not fixed unless driven by a phased locked loop slaved to a reference frequency. The style of construction is either cylindrical or pancake. (Figures and below)
Cylindrical construction: (a) outside rotor, (b) inside rotor.
The most usual construction, cylindrical, can take on two forms (Figure above). The most common cylindrical style is with the rotor on the inside, above right. This style motor is used in hard disk drives. It is also possible to put the rotor on the outside surrounding the stator. Such is the case with brushless DC fan motors, sans the shaft. This style of construction may be short and fat. However, the direction of the magnetic flux is radial with respect to the rotational axis.
Pancake motor construction: (a) single stator, (b) double stator.
High torque pancake motors may have stator coils on both sides of the rotor (Figure above-b). Lower torque applications like floppy disk drive motors suffice with a stator coil on one side of the rotor, (Figure above-a). The direction of the magnetic flux is axial, that is, parallel to the axis of rotation.
The commutation function may be performed