geometria analitica
Representação do plano-xy com a inscrição dos vetores unitários i e j.
A geometria analítica é muito utilizada na física e na engenharia, e é o fundamento das áreas mais modernas da geometria, incluindo geometria algébrica, diferencial, discreta e computacional.
Em geral, o sistema de coordenadas cartesianas é usado para manipular equações em planos, retas, curvas e círculos, geralmente em duas dimensões, mas, por vezes, também em três ou mais. A geometria analítica ensinada nos livros escolares pode ser explicada de uma forma mais simples: ela diz respeito à definição e representação de formas geométricas de modo numérico e à extração de informação numérica dessa representação. O resultado numérico também pode, no entanto, ser um vector ou uma forma. O fato de que a álgebra dos números reais pode ser empregada para produzir resultados sobre o contínuo linear da geometria baseia-se no axioma de Cantor-Dedekind.
Em matemática, a expressão geometria analítica possui dois significados distintos. O significado moderno e avançado se refere à geometria das variedades