Função
Uma função é uma aplicação entre conjuntos. As funções descrevem fenômenos numéricos e podem representar-se através de gráficos sobre eixos cartesianos. O gráfico de uma função permite ver, muito facilmente, toda a sua evolução. Porém, por vezes, pode ser mais cômodo trabalhar com a equação ou fórmula da função, já que com ela temos à nossa disposição o conjunto de operações que devemos aplicar à variável independente, normalmente representada por x, para obter a variável dependente, normalmente representada por y. Podemos imaginar que uma função é uma máquina em que introduzimos um número x do conjunto de partida, dela saindo o número f(x).
O estudo das funções é importante, uma vez que elas podem ser aplicadas em diferentes circunstâncias: nas engenharias, no cálculo estatístico de animais em extinção, etc.
O significado de função é intrínseco à matemática, permanecendo o mesmo para qualquer tipo de função, seja ela do 1° ou do 2° grau, ou uma função exponencial ou logarítmica. Portanto, a função é utilizada para relacionar valores numéricos de uma determinada expressão algébrica de acordo com cada valor que a variável x assume.
Sendo assim, a função do 1° grau relacionará os valores numéricos obtidos de expressões algébricas do tipo (ax + b), constituindo, assim, a função f(x) = ax + b.
2. DESENVOLVIMENTO
Consideremos x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y. Definimos essa dependência como função, nesse caso, y está em função de x. O conjunto de valores conferidos a x deve ser chamado de domínio da função e os valores de y são a imagem da função.
Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0.
Esse tipo de função deve ser dos Reais para os Reais.
A representação gráfica de uma função do 1º grau é uma