Fatoração
O QUE SIGNIFICA FATORAR?
Fatorar significa transformar em produto
FATORAÇÃO DE POLINÔMIOS
Fatorar um polinômio significa transformar esse polinômio num produto indicado de polinômios ou monômios e polinômios .
A propriedade distributiva será muito usada sob a denominação de colocar em evidencia. Vejamos a seguir alguns casos de fatoração.
1) FATOR COMUM
Vamos fatorar a expressão ax + bx + cx
Ax + bx + cx = x . (a + b + c)
O x é fator comum e foi colocado em evidência.
Exemplos
Vamos fatorar as expressões
1) 3x + 3y = 3 (x + y)
2) 5x² - 10x = 5x ( x – 2)
3) 8ax³ - 4a²x² = 4ax²(2x – a)
EXERCÍCIOS
1) Fatore as expressões:
a) 4x + 4y = R: 4 ( x + y)b) 7a – 7b = R: 7 (a - b)c) 5x – 5 = R: 5 (x - 1)d) ax – ay = R: a (x - y)e) y² + 6y = R: y (y + 6)f) 6x² - 4a = R: 2 (3x² - 2a)g) 4x⁵ - 7x² = R: x² ( 4x³ - 7)
h) m⁷ - m³ = R : m³( m⁴- 1)
i) a³ + a⁶ = R: a³ ( 1 + a³)
j) x² + 13x = R: x(x + 13)k) 5m³ - m² =
l) x⁵⁰ + x⁵¹ =
m) 8x⁶ - 12x³ =
n) 15x³ - 21x² =
o) 14x² + 42x =
p) x²y + xy² =
2) Fatore as expressões:
a) 2a – 2m + 2n = (R: 2 (a -m+n))b) 5a + 20x + 10 = (R: 5(a + 4x + 2))c) 4 – 8x – 16y = (R: 4(1 - 2x - 4y))d) 55m + 33n = (R: 11(5m + 3n))e) 35ax – 42ay = (R: 7a(5x -6y)
f) 7am – 7ax -7an = (R: 7a(m - x - n))
g) 5a²x – 5a²m – 10a² = (R: 5a² ( x -m- 2))
h) 2ax + 2ay – 2axy = (R: 2a(x + y -xy))
3) Fotore as expressões:
a) 15x⁷ - 3ax⁴ =
b) x⁷ + x⁸ + x⁹ =
c) a⁵ + a³ - a² =
d) 6x³ -10x² + 4x⁴ =
e) 6x²y + 12xy – 9xyz =
f) a(x -3) + b(x -3) =
g) 9 ( m + n )- a( m –n)
2) AGRUPAMENTO
Vamos fatorar a expressão ax + bx + ay + by
ax + bx + ay + by x( a + b) + y ( a+ b)
(a + b) .( x +y)
Observe o que foi feito:
Nos dois primeiros temos “x em evidencia”
Nos dois últimos fomos “y em evidência”
Finalmente “ (a + b) em evidência”
Note que aplicamos duas vezes a fatoração utilizando o processo do fator comum
Exemplos:
Vamos fatorar as expressões:
1º exemplo
5ax + bx + 5ay + by