ETAPA 4 Matematica
Aula-tema: Função exponencial
PASSOS:
Passo 1:
Ler as informações relacionadas abaixo, para resolver as solicitações dos próximos passos.
Para todos os participantes do grêmio de funcionários é descontado 1% de seu salário mensal como contribuição. Dentre diversas vantagens o colaborador participante do grêmio tem acesso a empréstimos em um banco parceiro que ofereceu, para escolha de sua equipe, duas opções de taxas:
1ª) Taxa de 4,4% ao mês, a juros simples.
2ª) Taxa de 1,75% ao mês, a juros compostos.
Outra excelente vantagem é uma bonificação anual dada aos motoristas de carretas, proporcional a 1,5% do valor atual dos veículos.
Passo 2
1. Definir uma função que descreva o Montante a ser pago em função do tempo de empréstimo para cada modalidade oferecida e calcular, para um empréstimo de R$ 10.000,00 o montante a ser pago ao final de quatro meses em cada opção dada. Demonstrar, para quatro meses, em quantos reais os juros cobrados na melhor modalidade serão menores do que os cobrados na outra modalidade.
1ª Opção:
2ª Opção
A melhor modalidade é a 2ª opção ( juros compostos de 1,75% a.m)
Os juros cobrados serão menores em R$ 1.041,00
2. Definir a melhor modalidade a ser escolhida em função do número de meses t no intervalo de 1 ≤t ≤ 42. Anotar todo o processo de resolução e os resultados obtidos.
A melhor modalidade é a 2ª opção (juros compostos de 1,75% a.m) Passo 3:
Calcular o valor de bonificação total dada aos motoristas de carreta sabendo que cada carreta foi comprada há 3 anos por R$ 150.000,00 e que anualmente este equipamento sofre uma depreciação de 15,2%.
Bonificação anual dada aos motoristas de carretas, proporcional a 1,5% do valor atual dos veículos.
Cálculo da bonificação
São 15 carretas, então 15 motoristas:
O valor de bonificação total dada aos motoristas de carreta é:
R$ 1.908,00 .15 = R$ 28.620,00
Passo 4
Aprimorar o documento descritivo com os dados recolhidos, já enumerados, ficando livres para