Etapa 4 ATPS Matematica
Introdução................................................................................................... Pag. 1
Conceitos das funções do 2º Grau.............................................................. Pag. 2
Aplicações das derivadas nas áreas econômicas e administrativa....... Pag. 3
O conceito das funções do 2°grau
Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a ≠ 0, é denominada função do 2º grau. Generalizando temos:
As funções do 2º grau possuem diversas aplicações no cotidiano, principalmente em situações relacionadas à Física envolvendo movimento uniformemente variado, lançamento oblíquo, etc.; na Biologia, estudando o processo de fotossíntese das plantas; na Administração e Contabilidade relacionando as funções custo, receita e lucro; e na Engenharia Civil presente nas diversas construções.
A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.
A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.
As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau, ax² + bx + c = 0, dependendo do valor do discriminante ∆.
O grau de uma função
O grau de uma variável independente é dado pelo seu expoente. Assim, as funções de segundo grau são dadas por um polinômio de segundo grau, e o grau do polinômio é dado pelo monômio de maior grau.
No dia-a-dia, há muitas situações definidas pelas funções de segundo grau. A trajetória de uma bola lançada para frente é uma parábola. Se fizermos vários furos em várias alturas num bote cheio de água, os pequenos jorros de água que saem pelos furos descrevem parábolas. A antena