Equação do 2º grau

419 palavras 2 páginas
Equação do 2º grau

Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:

2x + 1 = 0, o expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.

2x² + 2x + 6 = 0, temos duas incógnitas x nessa equação, em que uma delas possui o maior expoente, determinado por 2. Essa equação é classificada como do 2º grau.

x³ – x² + 2x – 4 = 0, nesse caso temos três incógnitas x, em que o maior expoente igual a 3 determina que a equação é classificada como do 3º grau.

Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau, utilizando o método de Bhaskara. Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. Por exemplo, as raízes da equação do 2º grau x² – 10x + 24 = 0 são x = 4 ou x = 6, pois:

Substituindo x = 4 na equação, temos:

x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)

Substituindo x = 6 na equação, temos:

x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)

Podemos verificar que os dois valores satisfazem a equação. Mas como determinarmos os valores que tornam a equação uma sentença verdadeira? É sobre essa forma de determinar os valores desconhecidos que abordaremos a seguir.

Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.

Uma equação do 2º grau possui a seguinte lei de formação ax² + bx + c = 0, onde a, b e c são os coeficientes da equação. Portanto, os coeficientes da equação x² – 2x – 3 = 0 são a = 1, b = –2 e c = –3.

Na fórmula de Bhaskara utilizaremos somente os coeficientes. Veja:

1º passo: determinar o valor do discriminante ou delta (?)

Relacionados

  • equação do 2º grau
    835 palavras | 4 páginas
  • equaçao do 2º grau
    854 palavras | 4 páginas
  • Equação 2º Grau
    353 palavras | 2 páginas
  • Equação do 2º grau
    1924 palavras | 8 páginas
  • Equação do 2º grau
    1197 palavras | 5 páginas
  • Equação do 2º grau
    649 palavras | 3 páginas
  • Equação do 2º grau
    588 palavras | 3 páginas
  • equaçao do 2º grau
    886 palavras | 4 páginas
  • Equação de 1º e 2º graus
    866 palavras | 4 páginas
  • Tcc equação do 2º grau
    449 palavras | 2 páginas