Equação do 2º grau
Da definição acima temos obrigatoriamente que a ≠ 0, no entanto podemos ter b = 0 e/ou c = 0.
Caso b ≠ 0 e c ≠ 0, temos uma equação do 2° grau completa. A sentença matemática -2x2 + 3x - 5 = 0 é um exemplo de equação do 2° grau completa, pois temos b = 3 e c = -5, que são diferentes de zero.
-x2 + 7 = 0 é um exemplo de equação do 2° grau incompleta, pois b = 0.
Neste outro exemplo, 3x2 - 4x = 0 a equação é incompleta, pois c = 0.
Veja este último exemplo de equação do 2° grau incompleta, 8x2 = 0, onde tanto b, quanto c são iguais a zero.
Resolução de equações do 2° grau
A resolução de uma equação do segundo grau consiste em obtermos os possíveis valores reais para a incógnita, que torne a sentença matemática uma equação verdadeira. Tais valores são a raiz da equação.
Fórmula Geral de Resolução
Para a resolução de uma equação do segundo grau completa ou incompleta, podemos recorrer à fórmula geral de resolução:
Esta fórmula também é conhecida como fórmula de Bhaskara.
O valor b2 -4ac é conhecido como discriminante da equação e é representado pela letra grega Δ. Temos então queΔ = b2 -4ac, o que nos permitir escrever a fórmula geral de resolução como:
Resolução de equações do 2° grau incompletas
Para a resolução de equações incompletas podemos recorrer a certos artifícios. Vejamos:
Para o caso de apenas b = 0 temos:
Portanto para equações do tipo ax2 + c = 0, onde b = 0, podemos utilizar a fórmula simplificada para calcularmos as suas raízes. Observe no entanto que a equação só possuirá raízes no conjunto dos números reais se .
Para o caso de apenas c = 0 temos:
Portanto para equações do tipo ax2 + bx = 0, onde c = 0, uma das raízes sempre será igual a zero e a outra será dada pela fórmula .
Para o caso de b = 0 e c = 0 temos:
Podemos notar que ao contrário dos dois casos anteriores, neste caso temos apenas uma única raiz real, que será sempre igual a zero.
Discriminante da equação do 2° grau
O