Engenharia
Disciplina: Cálculo de Funções de Várias Variáveis Engenharia Básico Profª Juliana Brassolatti Gonçalves
Lista 5
1. Calcule as integrais indefinidas abaixo, usando as propriedades: a) d)
∫ 6 x dx
∫ − x 3 dx
2
b) e) h)
∫ (x
7
− 6 x + 8) dx
c) f)
∫ − 3x
⎜ ∫⎜ ⎝ ⎛
−4
dx
1 ⎞ ⎟ dx ⎟ x⎠
∫2
4
3
x dx
x+
g) 18 ⋅ e 6x dx
∫
∫ x dx
i) - 8 ⋅ cosec 2 x dx
∫
2. Calcule as integrais indefinidas abaixo, usando o método da Substituição: a)
∫
3 - 2x dx
b)
∫
1 5x + 4
dx
c)
∫x⋅
4
1 - x 2 dx
d) e) h)
2 ∫ 3x ⋅ 7 - 3x dx
e) f) i)
∫
2⋅e
x
2 ∫ sec ⋅ (3x + 2) dx
∫ (2 + senx )3 dx ∫ (2 x
2
dx x 6 ⋅ cos x
f) g)
∫ cos(3x + 4) dx
∫ x 2 + 4 dx x ∫ 2 - cosx dx ∫ x.sen5x dx ∫x
2
senx
+ 2x − 3
)
10
⋅ (2x + 1) dx
3. Calcule as integrais indefinidas abaixo, usando o método da Integração por Partes: a) b)
∫x⋅e
4x
dx
2
c)
∫ (x + 1) ⋅ cos2x dx
d)
⋅ lnx dx
e)
∫ ( x − 1) sec
x dx
4. Calcule as integrais definidas:
a)
−2
∫ (2 x + 5) dx
∫ (3 sec
0
2
0
⎛ x3 ⎞ ⎜ 3 x − ⎟ dx b) ∫ ⎜ 4 ⎟ ⎠ 0⎝
4
π
c)
∫ (1 + cos x) dx
0
π 3
π 2
2
d)
x) dx
e)
∫
0
1 + cos 2 x dx 2
π 2
f)
−π 2
∫ (8 x
2
+ senx) dx
g)
x ∫ xe dx
0
1
ln 2
h)
∫e
0
3x
dx
GABARITO 1. a) R: 3x + C
2
x8 b) R: − 3x 2 + 8 x + C 8
e) R: x3 + C
c) R:
1 +C x3
d) R:
1 +C x2
f) R:
2 3 x +2 x +C 3
g) R: 3 ⋅ e 6 x + C
h) R: 4 ⋅ ln x + C
i) R: 8 ⋅ cot gx + C
1 2. a) R: - ⋅ (3 − 2 x) 3 + C 3 1 d) R: - ⋅ (7 − 3x 2 ) 3 + C 3
e) R:
b) R:
2 ⋅ 5x + 4 + C 5 x 2 c) R: - ⋅ 4 (1 − x 2 ) 5 + C 5
f) R:
e) R: 4 ⋅ e
+C
1 ⋅ sen(3 x + 4) + C 3
1 ⋅ tg (3x + 2) + C 3
f) R:
−3 +C (2 + senx) 2
g) R:
1 ⋅ ln( x 2 + 4) + C 2
h) R: ln(2 − cos x) + C
i) R:
1 (2 x 2 + 2 x −