desenvolvimento de Taylor
O presente trabalho é sobre o Desenvolvimento de Taylor; Séries de Taylor mas concretamente será apresentado Fórmulas de Taylor, a História das Sequencias e Series, vai abordar também sobre a Biografia do Taylor e alguns exemplos sobre o assunto.
O objetivo do trabalho é repassa aos queridos estudantes como podemos utilizar esse assunto e como ele foi utilizado esse tempo todo e descobrirmos qual a sua utilidade no nosso conhecimento.
A metodologia utilizada foi a pesquisa bibliográfica, enriquecida com pesquisas de livros e assuntos encontrados em blogs de internet
HISTÓRIA DAS SEQUENCIAS E SÉRIES
Zenão de Eléa (490--425 a.C.) escreveu um livro com 40 paradoxos relativos ao contínuo e ao infinito. Pelo menos quatro dos paradoxos influenciaram o desenvolvimento da matemática para explicar os fenômenos relevantes. Infelizmente, o livro não sobreviveu até os tempos modernos, assim conhecemos estes paradoxos a partir de outras fontes. Os paradoxos de Zenão sobre o movimento desconcertaram matemáticos por séculos. No final eles envolvem a soma de um número infinito de termos positivos a um número finito, o qual é a essência da convergência de uma série infinita de números. Vários matemáticos contribuíram para o entendimento das propriedades de seqüências e séries. Este ensaio destaca as contribuições de alguns daqueles matemáticos que estudaram seqüências e séries.
Zenão não foi o único matemático da antiguidade a trabalhar com seqüências. Vários dos matemáticos gregos da antiguidade usaram seu método de exaustão (um argumento seqüencial) para mediar áreas de figuras e regiões. Usando sua técnica refinada de raciocínio chamada de "método", Arquimedes (287-- 212 a.C.) alcançou vários resultados importantes envolvendo áreas e volumes de várias figuras e sólidos. Na verdade, ele construiu vários exemplos e tentou explicar como somas infinitas poderiam ter resultados finitos. Dentre seus vários resultados estava que a área sob