circunferencia reduzida
Na ilustração, a circunferência possui centro C com coordenadas (a, b). O ponto genérico P possui as coordenadas (x, y). Vamos estabelecer a distância entre os pontos C e P utilizando a expressão matemática , de acordo com as definições da Geometria Analítica.
De acordo com a ilustração gráfica, a distância entre os pontos C e P é considerado o raio da circunferência. Dessa forma, substituiremos D²C,P por R (raio), observe:
(x – a)² + (y – b)² = R²
Vamos determinar a equação reduzida da circunferência com centro C (2, –9) e raio 6.
(x – a)² + (y – b)² = R²
(x – 2)² + (y + 9)² = 6²
(x – 2)² + (y + 9)² = 36
(FEI–SP) Determine a equação da circunferência com centro no ponto C (2, 1) e que passa pelo ponto A (1, 1).
A distância entre o centro C e o ponto P corresponde à medida do raio.
(x – a)² + (y – b)² = R²
(x – 2)² + (y – 1)² = 1²
(x – 2)² + (y – 1)² = 1
A equação da circunferência com centro C (2, 1) e que passa pelo ponto A (1, 1) possui como equação reduzida a expressão matemática (x – 2)² + (y – 1)² = 1. A equação geral surgirá do desenvolvimento da expressão reduzida (x – 2)² + (y – 1)² = 1, veja:
(x – 2)² + (y – 1)² = 1 x² – 4x + 4 + y² – 2y + 1 – 1 = 0 x² + y² – 4x – 2y + 4 = 0
Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola
Equação geral da circunferência
No estudo da equação reduzida da circunferência, vimos uma expressão em que os pontos do centro da circunferência estão explicitados. Caso você não se lembre da equação reduzida da circunferência, leia o artigo Equação Reduzida da Circunferência .
Entretanto, poderemos ter equações do segundo grau com duas incógnitas que podem representar a equação de uma circunferência. Para isso, desenvolveremos os quadrados da equação reduzida.
Como dito