Calculo
Engenharia Elétrica
OSASCO
2013
ETAPA 1 (tempo para realização: 5 horas ) Aula-tema: Conceito de Derivada e Regras de Derivação.
Essa atividade é importante para poder verificar a aplicação da derivada inserida em conceitos básicos da física. A noção intuitiva de movimento, velocidade, aceleração é algo intrínseco a todos, já que é algo natural. No entanto, quando visto sob um olhar crítico científico, pode se observar as leis da física, em que as operações matemáticas e regras de derivação básica estão intimamente ligadas a essas leis.
Para realizá-la, devem ser seguidos os passos descritos.
PASSOS
Passo 1 (Aluno)
Pesquisar o conceito de velocidade instantânea a partir do limite, com 0
Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a derivada da função espaço.
Dar um exemplo, mostrando a função velocidade como derivada da função do espaço, utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que compõe o RA dos alunos integrantes do grupo.
R= Velocidade instantânea, ( ) é a velocidade em que uma determinada partícula passa em um exato instante (t). Dada pela formula: ou seja velocidade instantânea é a derivada do espaço em relação ao tempo.
Se:
A derivada do espaço é :
Logo se a função , então pode-se afirmar que a função velocidade é derivada da função espaço exemplo :
A somatória dos últimos algarismos RAs dos integrantes desta atps é 24 considerando t= 2 s calcular a função velocidade .
Passo 2 (Aluno)
Montar uma tabela, usando seu exemplo acima, com os cálculos e plote num gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função você tem e calcular a variação do espaço percorrido e a variação de velocidade para o