Calculo
1. QUESTÃO
Uma mostra botânica está prevista para ser construída em uma região retangular, de forma que um rio se encontra em um dos lados, e os outros lados serão margeados por uma calçada de 2 metros de largura (veja figura abaixo) a área para as plantas precisam ser de 800 m2 (exigência legal). Encontre as dimensões externas da região, de forma que a área da calçada seja mínima (e, portanto, a quantidade de concreto a ser utilizada seja minimizada)
2. QUESTÃO
Uma pessoa quer plantar um jardim retangular ao longo de um dos lados de uma casa, e construir uma cerca nos outros três lados do jardim. Encontre as dimensões do maior jardim que pode ser cercado, utilizando 40 pés de cerca.
3. QUESTÃO
Um fazendeiro tem U$1500 disponíveis para construir uma cerca com a forma da letra E ao longo de um rio, de modo a criar dos pastos retangulares idênticos (veja figura abaixo). O material para o lado paralelo ao rio custa U$6 por pé, e o material para as outras três partes perpendiculares ao rio custa U$5 por pé. Encontre as dimensões da cerca, de forma que a área total seja maximizada.
4. QUESTÃO
Trezentos e vinte dólares estão disponíveis para serem gastos na construção da cerca em um jardim. A cerca no lado do jardim que faze frente com a rua custa U$ 6 por pé, e a cerca nas outras três faces custa U$ 2 por pé (veja a figura abaixo). Encontre as dimensões do maior jardim possível.
5. QUESTÃO
Um pomar de maça com 1000 árvores plantadas gera um lucro de U$40 por árvore. Devido ao excesso de árvores, o lucro por unidade (para cada árvore no pomar) é reduzido de 2 centavos para cada árvore adicional plantada. Quantas árvores devem ser plantadas de modo a maximizar o lucro do pomar? 6. QUESTÃO
Utilizando a regra de L-Hôpital calcule os seguintes limites. a) limh→0sinh2h b) limx→0sen6xsen8x c) limx→0+senx1-cosx d) limx→0xtgx e) limx→0senx2x f)