calculo
Seja a antidiferencial:
Observamos que a mesma corresponde a uma operação sobre pequenas seções de área, pois corresponde a multiplicação de um segmento numérico de largura, , pela altura, o valor da função aproximada ao limite em cada ponto.
A operação da forma que se apresenta estende-se de a . Analisando qual a natureza desta operação, podemos tomar dois valores para , sejam: e , sendo , quando analisamos este fato concluímos que a área do intervalo menor está dentro da área do maior, vemos que a operação comporta-se como uma soma de áreas, se somarmos todas as componentes de áreas ao longo da curva teremos uma área delimitada pela curva e o eixo x.
Chamamos esta operação de integral, seu símbolo é o mesmo da antidiferenciação, pois devido aos fatos acima introduzidos e ao teorema fundamental do cálculo, que discutiremos adiante, a operação de antidiferenciação pode ser chamada de integral indefinida.
A integral definida
Aprofundando o conceito de que há uma soma de pequenos segmentos de área para cada ponto em uma curva, podemos delimitar uma seção da curva, através da adoção de um intervalo, desta forma teremos uma área definida, a qual chamamos de integral definida. Antes de detalhar o processo para encontrar a referida área faz-se necessário a observação de conceitos que serão úteis para seu desenvolvimento, o próximo tópico abordará a somatória, um procedimento que facilitará o estudo das somas sucessivas que propomos analisar.
Calculando as áreas,
Consideremos o caso da função:
Os valores do seno entre e são positivos e entre e são negativos! Isto causa uma situação interessante, uma vez que as áreas entre a curva e o eixo dos dois intervalos, quando observadas no plano cartesiano, são idênticas, a área das duas deveria ser o dobro de uma delas, entretanto a integral calculada no intervalo entre e é nula! Esta é a razão pela qual devemos fazer o módulo das integrais em cada intervalo de mudança de sinal,