Binômio de Newton
Binômio de Newton foi definido pelo físico e matemático Isaac Newton, esse estudo veio para complementar o estudo de produto notável.
Produto notável diz que um binômio elevado ao quadrado é igual ao quadrado do primeiro monômio mais duas vezes o primeiro, vezes o segundo monômio mais o quadrado do segundo monômio.
(a + b)2 = a2 + 2ab + b2
Essa forma só é válida se o binômio for elevado ao quadrado (potência 2), se ele estiver elevado à potência 3, devemos fazer o seguinte:
(a + b)3 é o mesmo que (a + b)2 . (a + b), como sabemos que (a + b)2 = a2 + 2ab + b2, basta substituirmos:
(a + b)3 =
(a + b)2 . (a + b) =
(a2 + 2ab + b2) . (a + b) = a3 + 3a2b + 3ab2 + b2
E se for elevado à quarta, à quinta, à sexta potência, devemos utilizar sempre o binômio elevado à potência anterior para resolver.
O binômio de Newton veio pra facilitar esses cálculos, pois com ele calculamos a enésima potência de um binômio.
Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b².
Se quisermos calcular (a + b)³, podemos escrever:
(a + b)3 = a3 + 3a2b + 3ab2 + b3
Se quisermos calcular , podemos adoptar o mesmo procedimento:
(a + b)4 = (a + b)3 (a+b) = (a3 + 3a2b + 3ab2 + b3) (a+b)
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o desenvolvimento da potência a partir da anterior, ou seja, de . Porém quando o valor de n é grande, este processo gradativo de cálculo é muito/trabalhoso.
Existe um método para desenvolver a enésima potência de um binómio, conhecido como binómio de Newton (Isaac Newton, matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de suas propriedades e o triângulo de Pascal. Coeficientes Binomiais
Sendo n e p dois números naturais , chamamos de coeficiente binomial de classe p, do número n, o número , que indicamos por