ATPS TECNICAS DE RECRUTAMENTO E SELEÇAO
Chama-se o conjunto dos números inteiros, representado pela letra Z, o seguinte conjunto:
Z = {…, -3; -2; -1; 0; 1; 2; 3; …}
No conjunto Z distinguimos alguns subconjuntos notáveis que possuem notação própria para representá-los:
1. Conjunto dos inteiros não negativos: Z+ = {0; 1; 2; 3; …};
2. Conjunto dos inteiros não positivos: Z- = {…; -3; -2; -1; 0};
3. Conjunto dos inteiros não nulos: Z* = {…, -3; -2; -1; 1; 2; 3; …};
4. Conjunto dos inteiros positivos Z+* = {1; 2; 3; …};
5. Conjunto dos inteiros negativos Z-* = {…; -3; -2; -1}.
Note que Z+ = N e, por essa razão, N é um subconjunto de Z.
Observações:
No conjunto Z, além das operações e suas propriedades mencionadas para N, vale a propriedade simétrico ou oposto para a adição. Isto é: para todo a em Z, existe -a em Z, de tal forma que a + (-a) = 0;
Devido a este fato podemos definir a operação de subtração em Z: a – b = a + (-b) para todo a e b pertencente a Z;
Note que a noção de inverso não existe em Z. Em outras palavras, dado q pertencente a Z, diferente de 1 e de -1, 1/q não existe em Z;
Por esta razão não podemos definir divisão no conjunto dos números inteiros;
Outro conceito importante que podemos extrair do conjunto Z é o de divisor. Isto é, o inteiro a é divisor do inteiro b – simbolizado por b | a – se existe um inteiro c tal que b = ca;
Os números inteiros podem ser representados por pontos de uma reta orientada ou eixo, onde temos um ponto de origem, o zero, e à sua esquerda associam-se ordenadamente os inteiros negativos e à sua direita os inteiros positivos, separados por intervalos de mesmo comprimento;
Cada ponto da reta orientada é denominado de abcissa;
Em Z podemos introduzir o conceito de módulo ou valor absoluto: |x| = x se x >= 0 e |x| = -x se x < 0, para todo x pertencente a Z. Como decorrência da definição temos que |x| >= 0 para qualquer número inteiro.
Conjunto dos Números Racionais
O conjunto dos números racionais,