algebra linear
Sec¸˜o de Algebra e An´lise ca a
´
Alguns Problemas e Exames Resolvidos de Algebra Linear
LEAmb, LEAN, LEMat, LQ, MEBiol, MEQ
1o Semestre 2008/2009
Prof. Paulo Pinto http://www.math.ist.utl.pt/∼ppinto/ Conte´ do u 1 Alguns problemas resolvidos
1.1 Resolu¸˜o de alguns exames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ca 1.2 Exames sem resolu¸˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ca 2
16
4
2 Consultar exames em: http://www.math.ist.utl.pt/∼ppinto/AL/exames.html 22
1
Alguns problemas resolvidos
1.1 O sistema linear
x+z =3
x + 2y + 2z = 6
3y + 3z = 6
na forma matricial ´ e Consideremos ent˜o a a
1 0
1 2
0 3
1 0 1 x 3
1 2 2 y = 6 .
0 3 3 z 6 matriz aumentada e o consequente m´todo de elimina¸˜o e ca
1 0 1 | 3
1 0 1
1 | 3
2 | 6 −→ 0 2 1 | 3 3−→ 0 2 1
−L1 +L2
− 2 L2 +L3
0 3 3 | 6
0 0 3
3 | 6
2
Logo,
x+z =3
x=2
2y + z = 3 ⇔ y=1
3
3 z = 1. z=2 2
1.2 O sistema linear
´ equivalente a e de Gauss:
| 3
| 3 .
| 3
2
3z − 9w = 6
5x + 15y − 10z + 40w = −45
x + 3y − z + 5w = −7
0 0
3
−9
5 15 −10 40
1 3 −1
5
x y z w
6
= −45 .
−7
Consideremos ent˜o a matriz aumentada e o consequente m´todo de elimina¸˜o de Gauss: a e ca
0 0
3
−9 |
6
1 3 −1 5 | −7
5 15 −10 40 | −45 −→ 1 3 −2 8 | −9 −→
L1 ↔L3
−L1 +L2
1
1 3 −1
5 | −7
0 0 3 −9 | 6
L2
5
1 3 −1 5 | −7
1 3 −1 5 | −7
−→ 0 0 −1 3 | −2 −→ 0 0 −1 3 | −2 .
3L2 +L3
0 0 3 −9 | 6
0 0 0 0 | 0
2
Logo,