13 Aula
1. Introdução: regressão versus correlação
Em experimentos que procuram determinar a relação existente entre duas variáveis, por exemplo, a dose de uma droga e a reação, concentração e densidade ótica, peso e altura, idade da vaca e a produção de leite, etc., dois tipos de situações podem ocorrer:
(a) uma variável (X) pode ser medida acuradamente e seu valor escolhido pelo experimentador. Por exemplo, a dose de uma droga a ser ministrada no animal. Esta variável é a variável independente. A outra variável (Y), dita variável dependente ou resposta, está sujeita a erro experimental, e seu valor depende do valor escolhido para a variável independente. Assim, a resposta (reação, Y) é uma variável dependente da variável independente dose (X). Este é o caso da Regressão.
(b) as duas variáveis quando medidas estão sujeitas a erros experimentais, isto é, erros de natureza aleatória inerentes ao experimento. Por exemplo, produção de leite e produção de gordura medidas em vacas em lactação, peso do pai e peso do filho, comprimento e a largura do crânio de animais, etc. Este tipo de associação entre duas variáveis constitui o problema da Correlação.
Atualmente, se dá à técnica de correlação uma importância menor do que a da regressão. Se duas variáveis estão correlacionadas, é muito mais útil estudar as posições de uma ou de ambas por meio de curvas de regressão, as quais permitem, por exemplo, a predição de uma variável em função de outra, do que estudá-las por meio de um simples coeficiente de correlação.
2. Regressão linear simples
O termo regressão é usado para designar a expressão de uma variável dependente (Y) em função de outra (X), considerada independente. Diz-se regressão de Y em (sobre) X. Se a relação funcional entre elas é expressa por uma equação do 1º grau, cuja representação geométrica é uma linha reta, a regressão é dita linear.
Para introduzir a idéia de regressão linear simples, consideremos o seguinte