a analise
Se quiser saber quantos números de quatro algarismos são formados com os algarismos 1, 2, 3, 4, 5, 6, 7 e 9, é preciso aplicar as propriedades da análise combinatória.
Um homem possui cinco camisas, quatro calças, três paletós e dois pares de sapatos. De quantos modos diferentes ele pode se vestir? Para saber essas combinações é necessário utilizar as propriedades da análise combinatória.
Para efetuar os cálculos desses problemas, devemos estudar algumas propriedades da análise combinatória:
- Princípio fundamental da contagem
- Fatorial
- Arranjos simples
- Permutação simples
- Combinação
- Permutação com elementos repetidos.
A análise combinatória é um dos tópicos que a matemática é dividida, responsável pelo estudo de critérios para a representação da quantidade de possibilidades de acontecer um agrupamento sem que seja preciso desenvolvê-los.
Veja um exemplo de um problema de análise combinatória e como montamos os seus agrupamentos.
Dado o conjunto B dos algarismos B = { 1,2,3,4}. Qual a quantidade de números naturais de 3 algarismos que podemos formar utilizando os elementos do grupo B?
Esse é um tipo de problema de análise combinatória, pois teremos que formar agrupamentos, nesse caso formar números de 3 algarismos, ou seja, formar agrupamentos com os elementos do conjunto B tomados de 3 em 3.
Veja como resolveríamos esse problema sem a utilização de critérios ou fórmulas que o estudo da análise combinatória pode nos fornecer.
Esse esquema construído acima representa todos os números naturais de 3 algarismos que podemos formar com os algarismos 1,2,3,4, portanto, concluindo que é possível formar 24 agrupamentos.
Para descobrir essa quantidade de agrupamentos possíveis não é necessário montar