Vetor
02/06/2009
Grandezas Vetoriais
Grandezas físicas que não ficam totalmente determinadas com um valor e uma unidade são chamadas de grandezas vetoriais. As grandezas que ficam totalmente expressas por um valor e uma unidade são chamadas de grandezas escalares. Como exemplo de grandeza escalar temos a massa. Já as grandezas vetoriais, para que fiquem totalmente definidas necessitam de:
* Um Valor (módulo);
* Uma Unidade;
* Uma Direção;
* Um sentido.
Como exemplos de grandeza vetorial temos:
Velocidade, força, aceleração, etc.
Um vetor por sua vez tem três características: módulo, direção e sentido.
Para representar graficamente um vetor usamos um segmento de reta orientado.
O módulo do vetor, representa numericamente o comprimento de sua seta. No caso anterior, o módulo do vetor é igual a distância entre os pontos A e B, que por sua vez vale 3 u.
Para indicar vetores usamos as seguintes notações:
O módulo de um vetor é indicado utilizando-se duas barras verticais.
|A| (Lê-se: módulo de A)
Adição de Vetores
Podemos somar dois ou mais vetores, para obter um vetor soma.
Regra do polígono:
Ligam-se os vetores origem com extremidade. O vetor soma é o que tem origem na origem do 1º vetor e extremidade na extremidade do último vetor.
Subtração de Vetores
Para subtrair dois vetores adicionamos um deles ao oposto do outro.
Vetor x Número Real
O produto de um número real n por um vetor A, resulta em um vetor R com sentido igual ao de A se n for positivo ou sentido oposto ao de A se n for negativo. O módulo do vetor R é igual a n x |A|.
Decomposição de Vetores
A decomposição de vetores é usada para facilitar o cálculo do vetor resultante.
Seja um vetor R resultado da seguinte operação: R = A + B
Onde:
Rx = Ax + Bx
Ry = Ay +