Propriedades da Cônica
Em geometria, as cônicas são as curvas geradas na intersecção de um plano que atravessa um cone (daí o nome). Numa superfície em forma de cone, existem quatro tipos de intersecção que podem ser obtidos por esse processo e que resultam na:
1) Elipse: a cônica obtida através da interseção de um plano que atravessa a superfície de um cone obliquamente à base do mesmo;
2) Parábola: é a cônica também definida na intersecção de um plano que penetra a superfície de um cone e também a circunferência da base;
3) Hipérbole: é a cônica definida na interseção de um plano que penetra um cone paralelo ao seu eixo;
4) Circunferência, que é obtida através da intersecção de um plano que seja paralelo à base do cone.
As cônicas; em A temos a parábola, em B na parte de baixo temos a circunferência e na parte de cima a elipse e em C temos a hipérbole.
Excentricidade das Cônicas
As cônicas – hipérbole, parábola, elipse e a circunferência, possuem todas elas, um aspecto singular: podem ser obtidas através da interseção de um plano convenientemente escolhido com uma superfície cônica, conforme mostrado na figura a seguir:
A circunferência é, na realidade, uma elipse perfeita, cuja excentricidade é nula.
No caso da elipse já sabemos que: excentricidade = e = c/a
Como é válido na elipse que a2 = b2 + c2 , vem que:
Ora, como c < a , vem imediatamente que e < 1. Também, como a e c são distâncias e portanto, positivas, vem que e > 0. Em resumo, no caso da elipse, a excentricidade é um número situado entre 0 e 1 ou seja: 0 < e < 1.
Observa-se que a elipse é tanto mais achatada quanto mais próximo da unidade estiver a sua excentricidade.
Raciocinando opostamente, se o valor de c se aproxima de zero, os valores de a e de b tendem a igualar-se e a elipse, no caso extremo de c = 0, (o que implica e = 0) transforma-se numa circunferência. A circunferência é então, uma elipse de excentricidade nula.
No caso da