cônicas
Cônicas são figuras curvas que podem ser obtidas de diferentes formas, entre elas através da intersecção de um plano com uma superfície de revolução, como por exemplo, um cone.
As propriedades destas curvas podem ser estudadas sob o aspecto geométrico e através de um processo algébrico podemos obter as equações que representam cada uma destas curvas.
As Cônicas, foram estudadas por Menecmo, Euclides e Arquimedes. A elipse, a parábola, a hipérbole e a circunferência eram obtidas como secções de cones circulares retos com planos perpendiculares a um dos elementos do cone, conforme variação do ângulo no vértice (agudo, reto ou obtuso). Menecmo descobriu a elipse pesquisando sobre a parábola e a hipérbole, pois ofereciam as propriedades necessárias para a solução da duplicação do cubo. Também era de seu conhecimento as equações das curvas conforme a sua secção: quando formada por secção de um cone circular retângulo era (l uma constante), quando secção de cone acutângulo e quando secção de cone obtusângulo. O tratado sobre as cônicas estavam entre algumas das mais importantes obras de Euclides, porém se perderam, talvez porque logo foram superadas pelo trabalho mais extenso escrito por Apolônio.
A obra de nível mais avançado foi precisamente a feita por Apolônio de Perga, que substituiu qualquer estudo anterior e teve grande influência no desenvolvimento da matemática. Devido fundamentalmente a este estudo sobre as cônicas ele era conhecido como o Geômetra Magno.
O tratado consistia em oito livros que contém 387 proposições separadas. [Heath, 1921] diz que o texto sobre as cônicas é um grande clássico e que merecia ser mais conhecido, porém sua forma original é muito extensa.
Apenas os quatro primeiros livros foram preservados em grego e felizmente os três seguintes tinham sido traduzidos para árabe e também se preservaram.
Os quatro livros iniciais foram escritos como uma introdução elementar incluindo as proposições básicas das cônicas. A