progressão aritmetica
• Para três termos em P.A, podemos escrever:
( x – r , x , x + r )
• Para cinco termos em P.A, podemos escrever:
(x – 2r , x – r , x , x + r , x – 2r )
Exemplo:
Determine três números em P.A, sabendo que o elemento central é 4 e o produto entre eles é 28.
Para efetuarmos os calculos é necessário que retiremos os dados:
Como a P.A tem 3 termos ( x – r , x , x + r ) e x = 4
(x – r) . x . (x + r) = 28.
Então:
(4 – r) . 4 . (4 + r) = 28 r = +3 e r = -3
Assim iremos obter duas P.A
Para r = +3 a P.A será ( 1, 4, 7)
Para r = -3 a P.A será ( 7, 4, 1) uando uma progressão aritmética possui apenas três ou quatro elementos é possível fazer uma relação com seus elementos e tornar o cálculo dos seus termos e da razão mais simplificados.
• P.A de três termos
Uma P.A com três elementos será escrita da seguinte forma:
(x – r , x , x + r)
Exemplo: a soma dos três termos de uma P.A é 72 e o produto dos termos extremos é 560. Qual é essa P.A?
Sabemos que qualquer P.A de três elementos é escrita da seguinte forma: (x – r , x , x + r), comparando-a com as informações do enunciado teremos:
x – r + x + x + r = 72
3x = 72 x = 72 : 3 x = 24.
Como o elemento do meio da P.A de três elementos é o x, podemos dizer que será igual a 24.
Levando em consideração a segunda informação, teremos:
(x – r) . (x + r) = 560 x2 – r2 = 560
242 - r2 = 560 (-1)
-576 + r2 = -560 r2 = - 560 + 576 r2 = 16 r = 4
Portanto, a P.A será formada pelos seguintes elementos: (20, 24, 28).
• P.A de quatro elementos será escrita da seguinte forma:
(x – 3y , x – y , x + y , x + 3y), com r = 2y
Exemplo: Em uma P.A de quatro termos, a soma dos dois primeiros é zero e a soma dos dois últimos é 80. Qual é a razão da P.A?
Sabemos que qualquer P.A de quatro elementos é escrita da seguinte forma: (x – 3y , x